Commissioning and operation of the JUNGFRAU detector at the European XFEL: status and prospects

<u>M. Ramilli</u>¹, D. Boukhelef¹, U. Bösenberg¹, W. Ehsan¹, D. Fulla Marsa¹, S. Göde¹, S. Hauf¹, D. Khakulin¹, I. Klačková¹, M. Kuster¹, C. Lopez-Cuenca², A. Mozzanica², A. Münnich¹, A. Parenti¹, S. Redford², A. Samartsev¹, M. Sikorski¹, J. Szuba¹

¹European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld (DE) ²Paul Scherrer Institut, 5231 Villigen PSI (CH)

21st International Workshop on Radiation Imaging Detectors – iWoRiD 07. – 12.07.2019, Kolymbari (GR)

Overview

- Introduction
 - Instrument stations at Eu XFEL
 - The JUNGFRAU detector
- Commissioning and operation
- SPB/SFX
- FXE

- HED
- MID
- Burst mode operation
- Conclusions and outlook

The photon beamlines and instruments

European XFEL Time Structure

Light at Eu XFEL arrives short pulses

- Short means < 100 fs
- Up to 10¹² ph/pulse

Pulses are grouped in trains

The machine can run at nominal values:

- 10 Hz train rate
- 4.5 MHz pulse rate
- 220 ns spaced
- 2700 pulses per train (divided among instruments)
- 600 μs train duration

Commissioning of JUNGFRAU at XFEL

The JUNGFRAU detector

- Developed at Paul Scherrer Institut (PSI)
- Dynamic Gain Switching (DGS)
 - Dynamic range ~ 10000 10 keV photons (~ 110 dB)
 - Three gain stages: G0, G1, G2
- 16 storage cells (SCs): 0 f
 - SCf used in single-cell operation (currently implemented)
 - SC0 to SCf for 'burst mode' (still under test)
- Gain stage stored digitally
- Fixed current source for calibration purposes
- Output to pixel buffer

(currently implemented)

- Array of 4 x 2 ASICs
 - Each ASIC 256 x 256 pixels
 - Total 1024 x 512 ~ 500 kpixel
- Bump-bonded to Si sensor
 - 320 μm thick / 450 μm thick

Read out by 32 ADC (off chip)40 MHz clock FPGA

European XFEL

JUNGFRAU noise performances

7

Serial SFX @ atmospheric pressure

Roadrunner Sample Environment

Meents et al., Nature Comm. 8, 1281 (2017)

Allows fixed target (Si Chips) and jet operation

Triggers the JUNGFRAU acquisition

Commissioning: 30.04. - 05.05.

Results Overview

Resolution

Resolution of 1.9 Å observed Main limitations due to setup geometry

Indexing and hit rate

circles are the indexed peaks

the squares of different colours - (predicted) Bragg peaks for different crystals

Lysozome hit rate:
Chips: up to 60%
Jet: up to 30%
Indexing rate: ~ 50%

FXE: Towards a High-Speed femtosecond Molecular Camera

Perpendicular to the formation states the reaction takes reaction takes the reaction takes the reaction takes snapshots the reaction of the re

- A suite of simultaneous X-ray tools:
 - Absorption spectroscopy (XAS)
 - Emission spectroscopy (XES)
 - Wide and small angle scattering
- Probe transient molecular states
 - Time resolved
 - Correlated measurement
- 3 JUNGFRAU modules (of which 2 'temporary')

Simultaneous XES on Fe K α and K β lines

- Small pixels give better spatial resolution
 - Energy resolution
- Wide dynamic range
 - Avoid peak intensity saturation

11

Diffuse scattering and diffraction

Diffuse Scattering/Diffraction 1M (450um sensor) E E ∑ 77 mm

Ag Behenate powder diffraction on JF (by exp. 2118)

Bragg peak on JF (by exp. 2112)

Occasionally used in place of the LPD

- Advantages:
 - Better signal to noise
- Disadvantages:
 - Smaller area
 - Less memory cells

High Energy Density science at European XFEL

Relativistic laser plasmas produced with 200TW laser (>10²⁰W/cm²)

Warm dense matter using laser compression and diamond anvil cells

- Detector requirements:
 - Compact
 - Vacuum compatible
 - Small pixels
 - High dynamic range

European XFEL

Heated dense plasmas characterization

JUNGFRAU at MID

- Hard X-rays (5-20 keV)
- High spatial resolution of speckle patterns due to small $75x75 \ \mu m^2$ pixel size.
- Low noise (high gain) and thus single photon sensitivity, required for XPCS.
- High dynamic range (10⁴ ph/px/pulse@12 keV) required for CDI.
- 16 memory cells for burst mode with >200kHz.
- In vacuum installation allows windowless operation between sample and detector
- 2 modules required
- 1 'temporary' just delivered

Conclusions and Outlook

- JUNGFRAU detector developed at PSI
 - Dynamic Gain Switching
- 75 um pixel pitch
- Single photon sensitivity in the 'hard X-rays' instruments energy range (3 25 keV)
- Commissioned at all the 'hard X-rays' scientific instruments at Eu XFEL
 - SPB/SFX first commissioning (4 out of 8 modules)
 - FXE: user experiments since October 2018 (2 out of 3 modules)
 - HED: first user experiment in May 2019 (1 out of 4 modules)
 - MID: starting the commissioning now (1 out of 2 modules)
 - Burst mode operation:
 - Firs tests performed at SPB/SFX

European XFEL

- Successfully achieved 280 kHz frame rate (1 pulse every 4 at 1.1 MHz)
- Test gain calibration procedure for all the 16 storage cells (commissioning beamtime at HED)
- Goal: fully implemented for first SFX user experiment (November 2019)

Backup slides

Marco Ramilli et al.

Data Flow Concept (as implemented 2019)

Marco Ramilli et al.

Calibration Web Service – Workflow

The European XFEL Facility

Experiment hall Laboratories Offices

FEL Parameters

Baseline photon energy 0.25-25 keV

Pulse duration

< 100 fs

Pulse energy

a few mJ

Superconducting linac

14 – 17 GeV

Osdorfer Born

Electron beam to photon beamlines Undulator systems begin

3400 m

DESY-Bahrenfeld

Electron source Linear accelerator begins

DESY

DESY Campus

XFEL Scientific Instruments

SPB Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography

Will determine the structure of single particles, such as atomic clusters, viruses and biomolecules

MID Materials Imaging & Dynamics

Will be able to image and analyse nano-sized devices and materials used in engineering

FXE Femtosecond X-Ray Experiments

Will investigate chemical reactions at the atomic scale in short time scales molecular movies

HED High Energy Density Matter

Will look into some of the most extreme states of matter in the universe, such as the conditions at the center of planets

SQS Small Quantum Systems

- Will examine the quantum mechanical properties of atoms and molecules.
- -X SCS Soft X-Ray Coherent Scattering/Spectroscopy
 - Will determine the structure and properties of large, complex molecules and nano-sized structures.

3

β

Я

ło

S