Commissioning and operation of the JUNGFRAU detector at the European XFEL: status and prospects

M. Ramilli1, D. Boukhelef1, U. Bösenberg1, W. Ehsan1, D. Fulla Marsa1, S. Göde1, S. Hauf1, D. Khakulin1, I. Klačková1, M. Kuster1, C. Lopez-Cuenca2, A. Mozzanica2, A. Münnich1, A. Parenti1, S. Redford2, A. Samartsev1, M. Sikorski1, J. Szuba1

1European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld (DE)

2Paul Scherrer Institut, 5231 Villigen PSI (CH)

21st International Workshop on Radiation Imaging Detectors – iWoRiD
07. – 12.07.2019, Kolymbari (GR)
Overview

- Introduction
 - Instrument stations at Eu XFEL
 - The JUNGFRAU detector

- Commissioning and operation
 - SPB/SFX
 - FXE
 - HED
 - MID

- Burst mode operation

- Conclusions and outlook
The photon beamlines and instruments

Hard x-rays (3 – 25 keV)
- SASE 1 & SASE 2
- (Coherent) diffraction
- (Coherent) imaging
- X-ray spectroscopy

Soft x-rays (0.25 – 3 keV)
- SASE 3
- Coherent imaging
- Particle & X-ray spectroscopy
European XFEL Time Structure

Light at Eu XFEL arrives short pulses
- Short means < 100 fs
- Up to 10^{12} ph/pulse

Pulses are grouped in trains

The machine can run at nominal values:
- 10 Hz train rate
- 4.5 MHz pulse rate
- 220 ns spaced
- 2700 pulses per train (divided among instruments)
- 600 μs train duration
The JUNGFRAU detector

- Developed at Paul Scherrer Institut (PSI)
- Dynamic Gain Switching (DGS)
 - Dynamic range ~ 10000 10 keV photons (~ 110 dB)
 - Three gain stages: G0, G1, G2
- 16 storage cells (SCs): 0 – f
 - SCf used in single-cell operation (currently implemented)
 - SC0 to SCf for ‘burst mode’ (still under test)
- Gain stage stored digitally
- Fixed current source for calibration purposes
- Output to pixel buffer

- Array of 4 x 2 ASICs
 - Each ASIC 256 x 256 pixels
 - Total 1024 x 512 ~ 500 kpixel
- Bump-bonded to Si sensor
 - 320 μm thick / 450 μm thick

- Read out by 32 ADC (off chip)
- 40 MHz clock FPGA
JUNGFRAU noise performances

Noise map of a temporary module
- 10 μs exposure time
- RMS of pedestal distribution
- Average ~80 ENC

Noise as function of exposure time
- Average across the module
- Below 200 ENC for 600 μs exposure
- Integrating the whole train
SPB/SFX Instrument Overview

- Large area detectors
- Cover as much reciprocal space as possible
- JUNGFRAU 4M detector (8 modules)
- 4 delivered (3 ‘temporary’)
Serial SFX @ atmospheric pressure

Roadrunner Sample Environment
Meents et al., Nature Comm. 8, 1281 (2017)

JUNGFRAU 4M assembly (currently 1.5 M)

- Allows fixed target (Si Chips) and jet operation
- Triggers the JUNGFRAU acquisition

Commissioning: 30.04. - 05.05.

European XFEL
Results Overview

Resolution

- Resolution of 1.9 Å observed
- Main limitations due to setup geometry

Indexing and hit rate

- Circles are the indexed peaks
- The squares of different colours - (predicted) Bragg peaks for different crystals

- Lysozome hit rate:
 - Chips: up to 60%
 - Jet: up to 30%

- Indexing rate: ~ 50%
FXE: Towards a High-Speed femtosecond Molecular Camera

- A suite of simultaneous X-ray tools:
 - Absorption spectroscopy (XAS)
 - Emission spectroscopy (XES)
 - Wide and small angle scattering
- Probe transient molecular states
 - Time resolved
 - Correlated measurement
- 3 JUNGFRAU modules (of which 2 ‘temporary’)

- 3 JUNGFRAU modules (of which 2 ‘temporary’)

- x-ray
- laser
- Δt

- XAS
- PIN diode
- sample jet
- LPD
- Scattering pattern
- XES
- Ge(440)
- K_{β} XES
- XDS
- Timing tool
- spatial encoding

- Energy diagram:
 - Excited state
 - Short-lived transition states
 - Back to ground state

- Temporal evolution of the reaction:
 - 1. Laser pulse starts the reaction
 - 2. Laser pulse takes snapshots

- European XFEL
Simultaneous XES on Fe Kα and Kβ lines

- Small pixels give better spatial resolution
- Energy resolution
- Wide dynamic range
- Avoid peak intensity saturation
Diffuse scattering and diffraction

Diffuse Scattering/Diffraction

1M (450um sensor)

82 mm

77 mm

Occasionally used in place of the LPD

- **Advantages:**
 - Better signal to noise
- **Disadvantages:**
 - Smaller area
 - Less memory cells

Ag Behenate powder diffraction on JF (by exp. 2118)

Bragg peak on JF (by exp. 2112)
High Energy Density science at European XFEL

Relativistic laser plasmas produced with 200TW laser (>10^{20}W/cm²)

Warm dense matter using laser compression and diamond anvil cells

Detector requirements:
- Compact
- Vacuum compatible
- Small pixels
- High dynamic range
Heated dense plasmas characterization

- Spectrally resolved X-ray scattering
- Highly efficient HAPG spectrometer
- Signal over several orders of magnitude
- Large spectral range w/out losing spectral resolution
 - Large enough FEM area
 - Small enough pixels

Sample: diamond or graphite

[Diagram of JUNGFRAU setup with labels for slider, spacer, crystal, light-tight box, and adapter.]

User experiment 2180

[Graph showing intensity vs. photon energy with labels for elastic and inelastic scattering, K-edge.]
JUNGFRAU at MID

- Hard X-rays (5-20 keV)
- High spatial resolution of speckle patterns due to small 75x75 µm² pixel size.
- Low noise (high gain) and thus single photon sensitivity, required for XPCS.
- High dynamic range (10⁴ ph/px/pulse@12 keV) required for CDI.
- 16 memory cells for burst mode with >200kHz.
- In vacuum installation allows windowless operation between sample and detector
- 2 modules required
- 1 ‘temporary’ just delivered
Burst mode: status

- **Reset**
 - Pixel electronic components are reset
- **Exposure time**
 - Storage capacitance switches in
 - 2 μs
- **Signal voltage**
 - Storage capacitance switches out
 - Voltage level at this point is stored
 - 500 ns

Maximum frame rate

- 2 μs dead time
- 1 μs min exposure
- Tested at SPB/SFX:
 - 1.13 MHz bunch rate
 - 1.43 μs exposure
 - 280 kHz reached
 - 1 bunch every 4

Gain calibration

- Difference in gain single SC/burst mode:
 - Different capacitance of the SCs
 - Difference from SC15 and the others
- Gain calibration procedure:
 - Dependence from SCs
 - Re-calibrate G0 with single photon spectra
 - Rescale accordingly other gain stages
- Test at HED end of July
Conclusions and Outlook

- JUNGFRAU detector developed at PSI
 - Dynamic Gain Switching
 - 75 um pixel pitch
 - Single photon sensitivity in the ‘hard X-rays’ instruments energy range (3 – 25 keV)

- Commissioned at all the ‘hard X-rays’ scientific instruments at Eu XFEL
 - SPB/SFX first commissioning (4 out of 8 modules)
 - FXE: user experiments since October 2018 (2 out of 3 modules)
 - HED: first user experiment in May 2019 (1 out of 4 modules)
 - MID: starting the commissioning now (1 out of 2 modules)

- Burst mode operation:
 - First tests performed at SPB/SFX
 - Successfully achieved 280 kHz frame rate (1 pulse every 4 at 1.1 MHz)
 - Test gain calibration procedure for all the 16 storage cells (commissioning beamtime at HED)
 - Goal: fully implemented for first SFX user experiment (November 2019)
Backup slides
Data Flow Concept (as implemented 2019)
Calibration Web Service – Workflow

Established tools

Development

Expert Usage

Production

Monitoring

Continuous feedback, rapid feature implementation
The European XFEL Facility

Schenefeld
- Experiment hall
- Laboratories
- Offices

Osdorfer Born
- Electron beam to photon beamlines
- Undulator systems begin

DESY-Bahrenfeld
- Electron source
- Linear accelerator begins

FEL Parameters
- Baseline photon energy: 0.25–25 keV
- Pulse duration: < 100 fs
- Pulse energy: a few mJ
- Superconducting linac: 14 – 17 GeV

DESY Campus
- 3400 m
XFEL Scientific Instruments

<table>
<thead>
<tr>
<th>Hard X-Rays</th>
<th>Soft X-Rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPB Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography**</td>
<td>SCS Soft X-Ray Coherent Scattering/Spectroscopy</td>
</tr>
<tr>
<td>Will determine the structure of single particles, such as atomic clusters, viruses and biomolecules</td>
<td>Will determine the structure and properties of large, complex molecules and nano-sized structures.</td>
</tr>
<tr>
<td>MID Materials Imaging & Dynamics</td>
<td></td>
</tr>
<tr>
<td>Will be able to image and analyse nano-sized devices and materials used in engineering</td>
<td></td>
</tr>
<tr>
<td>FXE Femtosecond X-Ray Experiments</td>
<td></td>
</tr>
<tr>
<td>Will investigate chemical reactions at the atomic scale in short time scales molecular movies</td>
<td></td>
</tr>
<tr>
<td>HED High Energy Density Matter</td>
<td></td>
</tr>
<tr>
<td>Will look into some of the most extreme states of matter in the universe, such as the conditions at the center of planets</td>
<td></td>
</tr>
<tr>
<td>SQS Small Quantum Systems</td>
<td></td>
</tr>
<tr>
<td>Will examine the quantum mechanical properties of atoms and molecules.</td>
<td></td>
</tr>
</tbody>
</table>