

Performance Evaluation of Multi-Array Plastic Scintillation Detector

Bon Tack Koo, Hyun Cheol Lee, Chul Hee Min*

Department of Radiation Convergence Engineering, Yonsei University

Introduction

Radiation Portal Monitor (RPM) Systems

RPM systems perform radiation monitoring on border crossings.

Large-sized plastic scintillator

Gamma ray and neutron detection

-2-

- Large detectable area
- Easily manufactured with reasonable price

- Low Z-number material
- Dominant Compton scattering probability
- Poor energy resolution
- Frequent nuisance alarms.

•

YONSEI UNIVERSITY

Classification Algorithm for RPM System

The energy weighted algorithm is that the counts per channel of energy spectrum are multiplied by the energy of each channel.

Spectral Distribution by Source Condition

Multi-Array Plastic Scintillation Detector

Detector design

YONSEI UNIVERSITY

- Multiple hexagonal pillar shaped polyvinyl toluene (PVT) plastic were arranged in certain area.
- Total 14 PVTs were arranged and each PVT was coupled with photo-multiplier tube (PMT).

Purpose of the Study

The purpose of this study is to evaluate the performance of the multiarray plastic scintillation detector, which was designed to improve detection efficiency of conventional RPM system.

Materials and Methods

Practical Measurement Conditions

Static condition

Radionuclides

Source	¹³⁷ Cs	⁶⁰ Co	²²⁶ Ra	²² Na	⁵⁴ Mn	⁴⁰ K	
Activity (µCi)	74.6	51.3	6.6	13.2	14.5	80 kg	
Distance	2.5 m					0 m	
Time	1-10 sec. 60 sec						
Number of trial	5 (60 sec), 20 (1-10sec)						

* Background count was also measured.

- Nuclide to detector: 2.5 m
- Nuclides fixture materials
 - Tripod (disc sources, 2.5 m)
 - Additional stand (⁴⁰K, 1.0 m)

Practical Measurement Conditions

Dynamic condition

<Vehicle movement during experiment> ____

• Radionuclides

Source	¹³⁷ Cs	⁶⁰ Co	²²⁶ Ra	⁴⁰ K			
Activity (µCi)	4, 8, 16 , 32, 64	1, 3, 6 , 12, 24	14.1	80 kg			
Speed (km/h)	10, 20, 30						
Number of trial	30						

* Background count was also measured.

- Vehicle speed: 10 km/h, 20 km/h, 30 km/h.
- Source is located to pass the center of the detector.

Performance Evaluation of the Detector

Static condition spectra

- The energy weighted spectrum of ¹³⁷Cs and ⁶⁰Co were measured previously.
- The peak width was compared with full width at half maximum (FWHM).
- Total count comparison.
- Spectra by measurement time (1 to 10 sec)

Dynamic condition spectra

- Spectra by the speed of the vehicle and the activity of the sources.
- Speed: 10, 20, 30 km/h

ONSEI UNIVERSITY

Activity: 5 different activities for ¹³⁷Cs and ⁶⁰Co

Results and Discussion

Energy Weighted Spectra Under Static Condition

٢

YONSEI UNIVERSITY

Energy Weighted Spectrum Comparison

Energy weighted spectrum under static condition

 The full-width at half maximum of the peak for the multi-array PVT was decreased by 26.30% and 29.78% for ¹³⁷Cs and ⁶⁰Co, respectively.

ONSEI UNIVERSITY

The total count was increased with multi-array detector by 25.19% and 11.46% for ¹³⁷Cs and ⁶⁰Co respectively.

Energy Weighted Spectra by Measurement Time

- For both nuclides, the spectra showed a single peak for all cases, even though the measurement time was decreased from 10 sec to 1 sec.
- The peak location was within 0.5% (0.002 MeV) and 3.5% (0.037 MeV) of the theoretical Compton edge energy of ¹³⁷Cs and ⁶⁰Co respectively.

Energy Weighted Spectra with Various Speed

■ ¹³⁷Cs

ONSEI UNIVERSITY

- As the speed of the vehicle was increased, the total count was decreased. However, the peak was located in ±13.16% range of the theoretical Compton edge energy.
- The statistical fluctuation of the spectrum was increased as the activity of the source was decreased, but the peak was observed.

Energy Weighted Spectra with Various Speed

■ ⁶⁰Co

ONSEI UNIVERSITY

- As the speed of the vehicle was increased, the total count was decreased. However, the peak was located in ±13.16% range of the theoretical Compton edge energy.
- The statistical fluctuation of the spectrum was increased as the activity of the source was decreased, but the peak was observed.

Energy Weighted Spectra of NORM Sources

- The Compton edge peak of ²²⁶Ra was shown in the spectra, but the peak of daughter nuclide was not clear unlike the static condition.
- Some of ⁴⁰K spectra showed a peak at Compton edge energy, but with high statistical fluctuation.

YONSEI UNIVERSITY

Conclusion

Conclusion

<u>ONSEI UNIVERSITY</u>

- In this study, the performance evaluation of multi-array plastic scintillation detector was proceeded.
- Multi-array plastic scintillation detector showed sharper peak and abundant counts than conventional detector.
- Additionally, the detector showed the possibility of classification with short time measurement or low activity of the source.
- With this results, the classification between nuclides with similar theoretical Compton edge energies is expected with higher accuracy than conventional detector.

THANK YOU Q & A

Multi-Array Plastic Scintillation Detector

- Modeling the multi-array plastic scintillation detector
 - Optimal size of the detector was selected with the amount of produced and collected optical photons inside the detector.
 - Hexagonal pillar shaped PVT was multiply arranged with single PVT coupled to each PVT.

Multi-array plastic scintillation detector models. (Left: Geant4, right: practical model)

¹³⁷Cs 5 activities

⁶⁰Co 5 activities

Energy Weighted Spectra Under Static Condition

Energy calibration

ONSEI UNIVERSITY

- ¹³⁷Cs (0.478 MeV), ⁶⁰Co (1.041 MeV),
 ²²Na (0.340 MeV), ⁵⁴Mn (0.639 MeV)
- E (MeV) = 0.0008 * Ch 0.1082
- Spectra of naturally occurred radioactive materials (NORM)
 - The energy weighted spectrum of ⁴⁰K showed high statistical fluctuation, but a single peak was located at Compton edge energy.
 - In case of ²²⁶Ra, the Compton edge peak was shown, along with the peak of daughter nuclide after 1 MeV.

