Simulation Study on SOI based electron tracking Compton camera using deep learning method

K. Shimazoe¹, K. Toyoda¹, M.Uenomachi¹, Y.Yoshihara¹, H.Takahashi¹, A.Takeda², Y.Arai³

1. Department of Nuclear Engineering and Management, The University of Tokyo,

 $cos\theta = 1 - m_0 c^2 \left(\frac{1}{E_s + E_a} - \frac{1}{E_a}\right)$ Scatter E_s Absorber E_a $E_2(< E_1)$

Compton scattering

 $E_s = E_1 - E_2$

shimazoe@bioeng.t.u-tokyo.ac.jp

Photon absorption

 $E_a = E_2$

Compton Camera

- Gamma-ray imaging
- Based on Compton scattering kinetics
- High detection efficiency (no collimator)

2. Miyazaki University 3. KEK

- Detection energy + position
 - \rightarrow scattering angle (Compton cone)
- Draw some Compton cones \rightarrow Identify a position of source

Conventional : Low SN ratio caused by Compton cones Recoil electron tracking is one way to improve

SOI

Electron Tracking in SOI pixel detector

Fine-pitch SOI pixel sensor with trigger output capability is useful in electron tracking Compton imaging

Experimental Setup

1. 662 keV gamma photons are injected to the center 2. silicon detector with 10 μ m and 30 μ m pixel 3. Deposited energy is recorded in 2D 4. Data are classified into 8 categories each in alpha (horizontal) and beta (vertical) angle of scattering 5. Around 80000 data for teaching With Geant4 Monte Carlo simulation

Convolutional Neural Network

Deep learning with multi-layer Combination of convolutional layer to extract the local characteristics and pooling layer to minimize the size

	NHRI(CZ)	NFZ	6.0 mm →			
hip Size	6.0 mm sq.		<u>0 ← 4.6 mm</u>			
ixel Size	30 µm sq.					
PW Size	12 μm sq.					
f pixel ***	152 x 152					
ctive Pixel	44 x 44 (= 20,736)		152 x 152 Pixel Array μ 1Pixel = 30 μm x 30 μm			
ctive Area	4.3 mm x 4.3 mm		Rowsh			
ness of Sensor	250 µm	500 µm				
esistivity	1.5 k Ω · cm	$5 \ k\Omega \cdot cm$	151 Column Address Decoder 0	LOG		
wer Supply	1.8V @ Core / 3.3V @ IO		Column Amp. (COL_AMP)	ANA		
Bias (sensor)	5 - 500∨ <		 g' ↓TRIG_ROW			

Electron tracking with SOI detector improves the SN and angular resolution Investigation of direction extraction with automated deep learning method

Results

After teaching is finished the unknown images are used as input to estimate the direction in alpha and beta. Around 15 epoch is required for estimation.

Evaluation Convolution layer Fully connected layer 1. Around 40000 data are used to evaluation the accuracy of estimated direction in 8 categories 2. Using the unknown image as input to estimate the direction 3. Accuracy is defined by (no. of correct forecast data)/ (no. of all data) 4. SPD (Scatter Plane Deviation) is evaluated 5. Image is reconstructed with and without electron tracking

a. Tables shows the accuracy of alpha and beta angle (one angle) corresponds to 45 deg. In alpha And 22.5 deg in beta) with CNN b. 10 µm pixel shows the higher accuracy in estimation of alpha angle c. SPD (FWHM of accuracy) is around 36 degree in beta.

SPD with $10\mu m$ pixel is 57.5 deg. and with $30\mu m$ pixel is 73 deg. In alpha (horizontal) angle

Comparison of 10 and 30 µm pixel

Method	Pixel Size	α	β	SPD(α)	SPD(β)
CNN	10µm	61.76%	48.48%	57.5	36.3
CNN	30µm	47.52%	49.51%	73.0	35.6

Compton Image reconstruction (preliminary) is done with electron tracking and without electron tracking using simulated data. Electron tracking shows slightly better signalto-noise ratio and spatial resolution.

SPD evaluation

Electron	SNR(X)	SNR(Y)	PR(X)	PR(Y)
Without	3.99	3.47	32.3mm	26.4mm
With	4.83	5.15	30.4mm	23.6mm

SNR and spatial resolution (FWHM) in reconstructed image

Conclusions

- Deep learning method could be useful to estimate the direction of ejected recoil electron with SPD of a 58 degree and 36 degree in alpha and beta angle, which will accelerate the processing in et-Compton imaging Reconstructed image shows better SNR and resolution with e.t.
- Further investigation is required including the effect of noise in pixel.
- Silicon based et-Compton imager is in development

Reference

[1] J.E.Gormley et al., Nucl. Instr. and Meth. A. 397, pp440-447, (1997) [2] Y.Shikaze et al., Journal of Nucl. Sci. and Tech. Vol 53, Issue 12, pp1907-1918, (2016) [3] S.Takeda et al., NIMA Vol. 787, pp207-211, (2015) [4] Sato, Yuki, et al. Journal of Nuclear Science and Technology55.9 (2018): 965-970. [5] Y.Yoshihara et al, Null. Instr. and Meth. A. 873, pp51-55, (2017) [6] Shimazoe, K., et al. 11.02 (2016): C02030.

iWoRiD, 7th-13th July 2019, at Crete, Greece