

EP-DT Detector Technologies

Characterization of acceptor removal in silicon pad diodes irradiated by protons and neutrons

P. Dias de Almeida^{a,b}, Y. Gurimskaya^a, I. Mateu^a, M. Fernández Garcia^c, M. Moll^a

^a CERN
 ^b Fundação para a Ciência e a Tecnologia (FCT)
 ^c IFCA(CSIC-UC)

Motivation

New challenges as the LHC moves towards High Luminosity LHC.

Motivation

Radiation hardness of particle detectors has to be improved to cope with high fluences.

The ATLAS Collaboration, Eur. Phys. J.C (2010)

A. O. Mucha, 14th IPRD (2016)

Acceptor removal

•Apparent dopant removal due to the irradiation

Parameterization as

$$N_{eff}(\Phi) = N_{eff0} \cdot e^{-c \cdot \Phi} + g_c \Phi$$

• For neutron irradiation, incomplete acceptor removal is also considered $(N_c < N_{eff0})$

$$N_{eff}(\Phi) = N_{eff0} - N_c \left(1 - e^{-c\Phi}\right) + g_c \Phi$$

Fluence (neq/cm²)

Acceptor removal - Example

Example: Low Gain Avalanche Detectors (LGADs)

- LGADs have a highly doped layer to achieve gain
- Interesting for their timing capabilities
- However, the gain decreases when exposed to radiation due to 'acceptor removal'

Materials

Simple p-type pad diodes

Epitaxial 10, 50, 250, 1000 Ω·cm 50 μm

Float zone >10 000 Ω·cm 100, 150, 200, 285 μm

Proton and Neutron Irradiation From ~ 7x10¹² to 7x10¹⁵ n_{eq}cm⁻²

Acceptor Removal Previous Results

P. Almeida et al, 30th RD50 (2017)

Proton irradiated

Acceptor Removal Space Charge

The shape of the TCT waveform could not be used to check sign inversion because the sensors are just 50 μ m. But by comparing the charge collected over bias for different light injections, **it was possible to verify type inversion**.

6/6/2018

P. Dias de Almeida - 32nd RD50 Workshop

Acceptor Removal Type Inversion

 \triangle Depletes from the top ∇ Depletes from the bottom

NB: Additional evidence of type inversion from an annealing study: P. Dias de Almeida et al. 31st RD50

12/12/2018

P. Dias de Almeida

Acceptor Removal by Proton Irradiation

Annealing: 10 min @ 60°C

Acceptor Removal by Neutron Irradiation

Acceptor Removal

M. Moll (2017)

https://doi.org/10.1109/TNS.2018.2819506

Updated Epi Protons Updated Epi Neutrons

Taking type inversion into account doesn't change the acceptor removal rate **c** in a significant way, keeping the trend previously seen.

This parametrization is important by itself, but we would like to understand the defect dynamics of acceptor removal

TSC Proton Irradiation

Annealing: 10 min @ 60°C

There is a clear dependence of the B_iO_i peak with the initial Boron concentration. Suggesting that the main mechanism for acceptor removal is:

$$\begin{cases} I + B_s \to B_i \\ B_i + O_i \to B_i O_i \end{cases}$$

TSC Proton Irradiation

Annealing: 10 min @ 60°C

Assumptions:

- E(30) behave as a donor, and therefore contributes to positive space charge
- H(116), H(140) and H(152) behave as acceptors, and therefore contributes to negative space charge
- B₁O₁ also behaves as a donor, but for each B₁O₁ created there is one less B acceptor. For this reason the concentration of B₁O₁ is counted twice for space charge considerations in the upcoming analysis

Elena Donegani et al. (2015), 27th RD50 Workshop

Protons Macro vs Micro

Is there a match between defects observed through TSC and the measured N_{eff} from CV?

Neff,0 - Initial Boron Concentration [cm-3]

Protons Macro vs Micro

Is there a match between defects observed through TSC and the measured N_{eff} from CV?

Neff,0 - Initial Boron Concentration [cm-3]

Neutrons Macro vs Micro

Is there a match between defects observed through TSC and the measured N_{eff} from CV?

Neff,0 - Initial Boron Concentration [cm-3]

Neutrons Macro vs Micro

Is there a match between defects observed through TSC and the measured N_{eff} from CV?

Neff,0 - Initial Boron Concentration [cm-3]

Summary and Outlook

Work in progress to study acceptor removal:

- CV, IV, TCT and TSC were used to investigate the evolution of Neff vs fluence of detectors of different resistivities irradiated by protons and neutrons
- Evidence of type inversion in p-type silicon was observed for some proton irradiated sensors
- After correction for type inversion, Neff vs fluence plots were fitted to extract the acceptor removal parameter c
- Strong dependence between BiOi production and resistivity was detected by TSC measurements

- SIMS needed to measure Oxygen concentration
- Gamma irradiation should provide a cleaner environment to study BiOi properties
- TSC with light injection is in progress (single charge carrier filling)

Spare Slides

Annealing Study Interpretation of Neff

- Annealing at 60°C
- Up to 20480 min or ~14 days of accumulated annealing
- Neff calculated from CV measurements

Annealing Study TCT confirmation

BiOi energy level

Defect	Emission parameters: E _a (eV), σ (cm²), T _{TSC} (K),T _{DLTS} (K)	Reference
B _i O _i	-0.23	L. C. Kimerling et al., "Interstitial Defect Reactions in Silicon", Materials Science Forum, Vols. 38-41, pp. 141-150, 1989
B _i O _i	-0.25	P. M. Mooney, L. J. Cheng, M. Süli, J. D. Gerson, and J. W. Corbett Phys. Rev. B 15, 3836, 1977
B _i O _i	-0.24,4E-15, 98, 118	Trauwaert, Radiation and Impurity Related Deep Levels in Si, PhD thesis, IMEC-KUL, Leuven, 1995
B _i O _i	-0.27, 3E-13, 96, 113	Schmidt, J., Berge, C., Aberle, G., Appl. Phys. Lett. 73, 2167, 1998

 $B_i O_i$ – donor level at E_c -0.23 eV

Boron removal:

$$\begin{bmatrix}
I + B_s \longrightarrow B_i \\
B_i + O_i \longrightarrow B_i O_i
\end{bmatrix}$$

BiOi Pool-Frankel

