

Effect of e-lens on circulating beams

D. Mirarchi,

H. Garcia Morales, M. Fitterer, A. Mereghetti, G. Stancari, S. Redaelli, J. Wagner

On behalf of the LHC Collimation team

- I. Needs and working principle
- II. Simulation tools
- **III. Simulation studies**
- **IV.** Conclusions

I. Needs and working principle

- II. Simulation tools
- **III. Simulation studies**
- **IV.** Conclusions

Introduction

- Present collimation system designed to handle up to 360 MJ, HL-LHC design ~700 MJ
- How much of this energy is in the tails?

BLM signal calibrated using BCT signal

Working principle: hollow electron beam surrounds the p beam as additional hierarchy layer

D. Mirarchi, e-coolers and e-lenses simulations

meeting, 10th January 2019

2

4

Transverse position, $x [\Box]$

8

5

10

5

0

horizontal position $[\sigma_n]$

The University of Manchester

MANCHESTER

-10

-5

CÉRN

Simulation challenges

Very demanding collimation simulations with electron lens:

I. Needs and working principle

II. Simulation tools

III. Simulation studies

IV. Conclusions

Simulation tools

LHC Collimation

Project

CERN

- Electron lens model implemented in SixTrack and several working mode available:
 - 1. continuous (DC)

• Only uniform e⁻ beams could be used, two new functionalities are now available:

- Continuous simulations during energy ramp using either fixed or matched radius
- Simulations with ions beams circulating in the machine
- Can run on **BOINC**: crucial for long term tracking (>1e6 turns)
- On-going:
 - Implementation of bends using Chebyshev polynomials
 - Measured 2D e⁻ beam profile

I. Needs and working principle

- II. Simulation tools
- III. Simulation studies
- **IV.** Conclusions

Main goal: reasonable halo depletion rate without affecting the beam core

Detailed studies to be repeated for latest HL-LHC scenarios

Support to the cathode design

Constant current density

On-going studies

Unique opportunity to explore different operational scenarios and benchmark simulation code!

- I. Needs and working principle
- II. Simulation tools
- **III. Simulation studies**
- **IV.** Conclusions

Conclusions

• Solid collimation upgrade baseline for the HL-LHC

Recent assessment of large tail populations might require active halo control

HEL identified as most promising solution

• Simulation tools available, updated and suitable for long term tracking

- Simulation studies on both beam halo and core to provide optimal working point for HL-LHC and support to cathode design
- Encouraging results obtained in experimental tests recently performed at BNL, also useful for a thorough code benchmarking

Thank you for your attention!

BACKUP

Matched radius

Constant radius

