Search for the critical point of QCD at the CERN SPS

- P. Seyboth, Max-Planck-Institut für Physik, Munich and Jan Kochanowski University, Kielce (for the NA49 and NA61 collaborations)
- Introduction phase diagram of hadronic matter
- Onset of deconfinement in central Pb+Pb collisions at SPS energies
- Study of fluctuations and search for the critical point in NA49
- Future experimental program NA61

Phase diagram of hadronic matter

- QCD considerations suggest a first order phase boundary ending in a critical point
- hadrochemical freeze-out points are obtained from particle yields via statistical model fits
- T and μ_B approach the phase boundary and the estimated critical point location at the SPS
- evidence of phase transition in hadron production systematics ?
- indications of a critical point in fluctuations ?

onset of deconfinement in central Pb+Pb collisions at the SPS

- rapid changes of hadron production properties at low SPS energy
- only models with deconfinement at the early stage describe data
- deconfinement reached in central Pb+Pb collisions above ≈ 30AGeV

estimate of sound velocity c_s

(H.Petersen and M.Bleicher, nucl-th/0611001)

Minimum of sound velocity c_s (softest point of EoS) around 30A GeV

Phase space density from m_{T} spectra and BE correlations of π^{-}

S.Akkelin and Y.Sinyukov, Phys.Rev. C73, 034908 (2006)

plateau of the averaged phase space density at SPS energies may be associated with the onset of deconfinement

$\pi^{-}\pi^{-}$ BE correlations: radius parameters

midrapidity, $k_T = 0.2 \text{ GeV/c}$ R (fm) $\mathsf{R}_{\mathsf{side}}$ Ī RHIC AGS SPS R (fm) R_{out} I R (fm) . R_{long} 8 ī R_{out}/R_{side} 1.5 0.5 10^{2} 10

- - remarkably little change of R_{side} (fireball radius) and R_{out}
 - slow rise of R_{long} (lifetime)
 - no indication of $R_{out} >> R_{side}$ i.e. long duration of π emission (1st order phase transition, soft point of EoS)
 - hydro models have problems; need of more sophisticated modelling of freeze-out

P.Seyboth: Search for the critical point of QCD at the CERN SPS 25th Winter Workshop on Nuclear Dynamics - Big Sky, USA, 1-7/2/2009

√s_{NN} (GeV)

Electric charge fluctuations

(Jeon,Koch,Asakawa,Heinz,Müller)

Global charge conservation

$$\Phi_q = \sqrt{\frac{\langle Z^2 \rangle}{\langle N \rangle}} - \sqrt{\overline{z^2}}$$
$$z = q - \overline{q} \qquad Z = \sum_{i=1}^{N} (q_i - \overline{q})$$

PRC70,064903(2004) 0.2 $\Delta \Phi_{\mathsf{q}}$ **QGP+hadronization** 0 -0.2 -0.4 QGP 40 AGeV -0.6 20 AGeV 80 AGeV 30 AGeV 160 AGeV -0.8^L 0 0.2 0.3 0.1 0.4 $<N_{ch}>/<N_{ch}>_{tot}$

 $\Delta \Phi_{\rm q} = \Phi_{\rm q} - \Phi_{\rm q,gcc}$

QGP signature probably erased by hadronisation (Bialas) or the effect of resonance decays (Zaranek)

Search for the critical point in fluctuations

hydro predicts that evolution of the

system is attracted to critical point

effects of critical point are expected over a range of $T,\mu_{\rm B}$

120 220 $\chi_q/\chi_q^{\text{free}}$ ----- phase boundary 200 1.5 1.0 0.5 180 110 (MeV) T [MeV] 160 QCD Critical Point Chemical 140 Freezeout 100 120 $s/n_B=29.4$ (QCP) 100 $s/n_{\rm B}=25.6$ (CO) $s/n_{B}=22.2$ (FO) 80 90 150 200 250 300 800 400 600 1000 200 0 μ [MeV] μ_{B} (MeV) Y.Hatta and T.Ikeda, M.Asakawa et al., PRD67,014028 (2003) PRL 101,122302 (2008)

Fluctuations of the event-by-event K/ π ratio

maximum likelihood fit for each event

Fluctuations increase at lower energy effect of onset of deconfinement ?

M.Gorenstein et al., PLB585(2004)237

Fluctuations of the event-by-event $(p + \overline{p})/\pi$ ratio

Event-by-event fluctuations of multiplicity

large fluctuations are expected if hadronisation occurs close to the

QCD critical point M.Stephanov, K.Rajagopal, E.Shuryak, PRD60, 114028(1999) Y.Hatta and T.Ikeda, PRD67, 014028(2003)

no peak for ω in central Pb+Pb collisions at the SPS

Event-by-event fluctuations of $< p_T >$

CP estimates based on: M.Stephanov, K.Ra V Hatta and Tikeda

1: M.Stephanov, K.Rajagopal, E.Shuryak, PRD60, 114028(1999) Y.Hatta and T.Ikeda, PRD67, 014028(2003)

no indications of critical point in central Pb+Pb collisions at the SPS

Continuation of search for the critical point by NA61

strategy: scan in energy and system size A

NA61 will use the upgraded NA49 detector

new TPC readout and DAQ completed

 \rightarrow data taking rate increase x 10 (80 Hz)

- new zero degree calorimeter PSD, single nucleon resolution
- He-filled beam pipe through VTPCs to reduce δ -ray background

Projectile Spectator Detector under construction

- 60 lead/scintillator sandwiches
- 10 longitudinal sections
- 6 WLS-fiber/MAPD
- 10 MAPDs/module
- 10 Amplifiers with gain~40

expected energy resolution

planned schedule of NA61 for ion beams

- NA61 ion program accepted by SPSC in 2007, run with A ~ 32 recommended
- required compatibility with Pb ions in I-LHC motivates use of fragmentation beam
- start with ³²P ions anticipated in 2011

NA61 goals can be reached with fragmentation beam

QCD critical point searches – experimental landscape

partly complementary programs planned at CERN SPS 2011 BNL RHIC 2010 DUBNA NICA 2013 GSI SIS-CBM 2016

strong points of NA61:

- covers region of
 onset of deconfinement
- large acceptance $\rightarrow 4\pi$ yields
- tight constraint on spectators
- high event rate at all SPS energies
- flexibility to change A and energy

Conclusions

- the existence of the critical point of hadron matter is an important prediction of QCD that must be tested
- predictions locate the critical point in the phase diagram region accessible with ion-ion reactions at SPS energies
- no indications have yet been found in Pb+Pb collisions
- NA61 will perform a systematic search in A and energy starting in 2011
- complementary search programs are planned at RHIC, NICA and CBM

The NA49 Collaboration

T. Anticic²³, B. Baatar⁸, D. Barna⁴, J. Bartke⁶, H. Beck⁹, L. Betev¹⁰, H. Białkowska²⁰, C. Blume⁹,
B. Boimska²⁰, W. Borowski²², J. Book⁹, M. Botje¹, J. Bracinik³, P. Bunčić¹⁰, V. Cerny³, P. Christakoglou¹,
P. Chung¹⁹, O. Chvala¹⁴, J.G. Cramer¹⁶, P. Csató⁴, P. Dinkelaker⁹, V. Eckardt¹³, Z. Fodor⁴, P. Foka⁷,
V. Friese⁷, J. Gál⁴, M. Gaździcki^{9,11}, V. Genchev¹⁸, K. Grebieszkow²², S. Hegyi⁴, C. Höhne⁷, K. Kadija²³,
A. Karev¹³, V.I. Kolesnikov⁸, M. Kowalski⁶, M. Kreps³, A. Laszlo⁴, R. Lacey¹⁹, M. van Leeuwen¹,
P. Lévai⁴, L. Litov¹⁷, B. Lungwitz⁹, M. Makariev¹⁷, A.I. Malakhov⁸, M. Mateev¹⁷, G.L. Melkumov⁸,
M. Mitrovski⁹, J. Molnár⁴, St. Mrówczyński¹¹, V. Nicolic²³, G. Pálla⁴, A.D. Panagiotou², D. Panayotov¹⁷,
A. Petridis^{2,†}, W. Peryt²², M. Pikna³, J. Pluta²², D. Prindle¹⁶, F. Pühlhofer¹², R. Renfordt⁹, C. Roland⁵,
G. Roland⁵, M. Rybczyński¹¹, A. Rybicki⁶, A. Sandoval⁷, N. Schmitz¹³, T. Schuster⁹, P. Seyboth¹³,
F. Siklér⁴, B. Sitar³, E. Skrzypczak²¹, M. Slodkowski²², G. Stefanek¹¹, R. Stock⁹, H. Ströbele⁹, T. Susa²³,
I. Szentpétery⁴, J. Sziklai⁴, M. Szuba²², P. Szymanski^{10,20}, V. Trubnikov²⁰, M. Utvić⁹, D. Varga^{4,10},
M. Vassiliou², G.I. Veres^{4,5}, G. Vesztergombi⁴, D. Vranić⁷, A. Wetzler⁹, Z. Włodarczyk¹¹, A. Wojtaszek¹¹,

¹Nikhef, Amsterdam, Netherlands. ²Department of Physics, University of Athens, Athens, Greece. ³Comenius University, Bratislava, Slovakia.
 ⁴KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. ⁵MIT, Cambridge, USA. ⁶Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland. ⁷Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. ⁸Joint Institute for Nuclear Research, Dubna, Russia. ⁹Fachbereich Physik der Universität, Frankfurt, Germany. ¹⁰CERN, Geneva, Switzerland. ¹¹Institute of Physics, Jan Kochanowski University, Kielce, Poland. ¹²Fachbereich Physik der Universität, Marburg, Germany.
 ¹³Max-Planck-Institut für Physik, Munich, Germany. ¹⁴Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic. ¹⁵Department of Physics, Pusan National University, Pusan, Republic of Korea. ¹⁶Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA. ¹⁷Atomic Physics Department, Sofia University St. Kliment Ohridski, Sofia, Bulgaria. ¹⁸Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria. ¹⁹Department of Chemistry, Stony Brook Univ. (SUNYSB), Stony Brook, USA. ²⁰Institute for Nuclear Studies, Warsaw, Poland. ²¹Institute for Experimental Physics, University of Warsaw, Warsaw, Poland. ²²Faculty of Physics, Warsaw University of Technology, Warsaw, Poland. ²³Rudjer Boskovic Institute, Zagreb, Croatia. [†]deceased

The NA61 Collaboration

N. Abgrall²², A. Aduszkiewicz²³, B. Andrieu¹¹, T. Anticic¹³, N. Antoniou¹⁸, A. G. Asryan¹⁵, B. Baatar⁹, A. Blondel²², J. Blumer⁵, L. Boldizsar¹⁰, A. Bravar²², J. Brzychczyk⁸, S. A. Bunyatov⁹, K.-U. Choi¹², P. Christakoglou¹⁸, P. Chung¹⁶, J. Cleymans¹, D. A. Derkach¹⁵, F. Diakonos¹⁸, W. Dominik²³, J. Dumarchez¹¹, R. Engel⁵, A. Ereditato²⁰, G. A. Feofilov¹⁵, Z. Fodor¹⁰, M. Gaździcki^{17,21}, M. Golubeva⁶, K. Grebieszkow²⁴, F. Guber⁶, T. Hasegawa⁷, A. Haungs⁵, M. Hess²⁰, S. Igolkin¹⁵, A. S. Ivanov¹⁵, A. Ivashkin⁶, K. Kadija¹³, N. Katrynska⁸, D. Kielczewska²³, D. Kikola²⁴, J.-H. Kim¹², T. Kobayashi⁷, V. I. Kolesnikov⁹, D. Kolev⁴, R. S. Kolevatov¹⁵, V. P. Kondratiev¹⁵, A. Kurepin⁶, R. Lacey¹⁶, A. Laszlo¹⁰, S. Lehmann²⁰, B. Lungwitz²¹, V. V. Lyubushkin⁹, A. Maevskaya⁶, Z. Majka⁸, A. I. Malakhov⁹, A. Marchionni², A. Marcinek⁸, M. Di Marco²², I. Maris⁵, V. Matveev⁶, G. L. Melkumov⁹, A. Meregaglia², M. Messina²⁰, C. Meurer⁵, P. Mijakowski¹⁴, M. Mitrovski²¹, T. Montaruli^{18,*}, St. Mrówczyński¹⁷, S. Murphy²² T. Nakadaira⁷, P. A. Naumenko¹⁵, V. Nikolic¹³, K. Nishikawa⁷, T. Palczewski¹⁴, G. Palla¹⁰, A. D. Panagiotou¹⁸, W. Peryt²⁴, A. Petridis¹⁸, R. Planeta⁸, J. Pluta²⁴, B. A. Popov⁹, M. Posiadala²³, P. Przewlocki¹⁴, W. Rauch³, M. Ravonel²², R. Renfordt²¹, D. Röhrich¹⁹, E. Rondio¹⁴, B. Rossi²⁰, M. Roth⁵, A. Rubbia², M. Rybczynski¹⁷, A. Sadovsky⁶, K. Sakashita⁷, T. Schuster²¹, T. Sekiguchi⁷, P. Seyboth¹⁷, K. Shileev⁶, A. N. Sissakian⁹, E. Skrzypczak²³, M. Slodkowski²⁴, A. S. Sorin⁹, P. Staszel⁸, G. Stefanek¹⁷, J. Stepaniak¹⁴, C. Strabel², H. Stroebele²¹, T. Susa¹³, I. Szentpetery¹⁰, M. Szuba²⁴, A. Taranenko¹⁶, R. Tsenov⁴, R. Ulrich⁵, M. Unger⁵, M. Vassiliou¹⁸, V. V. Vechernin¹⁵, G. Vesztergombi¹⁰, Z. Włodarczyk¹⁷, A. Wojtaszek¹⁷, J.-G. Yi¹², I.-K. Yoo¹²

 ¹Cape Town University, Cape Town, South Afric. ²ETH, Zurich, Switzerland. ³Fachhochschule Frankfurt, Frankfurt, Germany. ⁴Faculty of Physics, University of Sofia, Sofia, Bulgaria. ⁵Forschungszentrum Karlsruhe, Karlsruhe, Germany. ⁶Institute for Nuclear Research, Moscow, Russia. ⁷Institute for Particle and Nuclear Studies, KEK, Tsukuba, Japan. ⁸Jagiellonian University, Cracow, Poland. ⁹Joint Institute for Nuclear Research, Dubna, Russia. ¹⁰KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. ¹¹LPNHE, University of Paris VI and VII, Paris, France. ¹²Pusan National University, Pusan, Republic of Korea. ¹³Rudjer Boskovic Institute, Zagreb, Croatia.
 ¹⁴Soltan Institute for Nuclear Studies, Warsaw, Poland. ¹⁵St. Petersburg State University, St. Petersburg, Russia. ¹⁶State University of New York, Stony Brook, USA. ¹⁷Jan Kochanowski University in Kielce, Poland. ¹⁸University of Athens, Athens, Greece. ¹⁹University of Bergen, Bergen, Norway. ²⁰University of Bern, Bern, Switzerland. ²¹University of Frankfurt, Frankfurt, Germany. ²²University of Geneva, Geneva, Switzerland. ²³University of Warsaw, Warsaw, Poland. ²⁴Warsaw University of Technology, Warsaw, Poland.

Backup slides

Future plans (NA61)

- scan energies of SPS with smaller size nuclei
- NA61 (using the upgraded NA49 detector) was approved by CERN; begin of ion program with A = 32 nuclei in 2011 ?

(1) study of details of the onset of deconfinement

QCD predicts quark, gluon deconfinement in high temperature and/or density hadron matter

hadrons overlap at densities > 0.5 fm⁻³ → deconfinement (Collins,Perry 1974)
quantitative predictions from Lattice QCD (non-perturbative)

Karsch, Laermann hep-lat/0305025 (for $\mu_a = 0$)

such conditions can be reached for a few fm/c in a large nucleus volume in relativistic heavy ion collisions already at the SPS

Pb+Pb collisions at top SPS energy

- initial energy density exceeds the critical value predicted by lattice QCD (≈ 1 GeV / fm³)
- signatures for deconfinement observed at SPS in 2000
 - strong radial and anisotropic flow of produced matter
 - strangeness enhancement
 - $J/\Psi, \Psi$ ' yield suppression
 - di-lepton enhancement, ρ^0 modification
- unfortunately signatures not specific for deconfinement
- NA49 search for a threshold by varying the energy for the largest collision system (central Pb+Pb reactions)
 SPS energy scan: 20, 30, 40, 80, 158 GeV/nucleon (√s_{NN} = 6.3, 7.6, 8.7, 12.3, 17.3 GeV) [completed in 2002]

The NA49 Detector

 $\sqrt{s_{NN}} = 6.3, 7.6, 8.7, 12.3, 17.3 \text{ GeV}$

P.Seyboth: Search for the critical point of QCD at the CERN SPS 25th Winter Workshop on Nuclear Dynamics - Big Sky, USA, 1-7/2/2009

-0.4-0.2 0 0.2 0.4 0.6 0.8

0.8

dE/dx

0

0.8

1

1.2

1.4

1.6

1.8

1214

m² [GeV]

Particle yields - statistical model

- hadron species populated approximately according to phase space probabilities (max.entropy) (Fermi,Hagedorn)
- strangeness sector not fully saturated (Rafelski)
- statistical model successful in A+A, p+p, e⁺+e⁻

 $T,\,\mu_B,\,\gamma_S,\,V$

Total pion yields

(C.Alt et al., PRC77, 024903(2008)

• increase of $\langle \pi \rangle / \langle N_W \rangle$ with energy gets steeper in the SPS range • π deficit changes to enhancement compared to p+p

Ratio of kaon to pion yields

at SPS energies produced \overline{s} quarks are mostly contained in kaons (equally in K⁺ and K⁰), s quarks are shared between K⁻, \overline{K}^0 and hyperons $\rightarrow \langle K^+ \rangle$ a measure of total strangeness yield

sharp peak observed in relative strangeness production <K+>/<π+> at SPS not reproduced by hadronic models

the energy dependence of the K/ π ratios at mid-rapidity shows similar structure as the 4π results !

at mid-rapidity identification is from dE/dx and TOF

Total yield of s, s quarks

estimated using: measured yields and isospin symmetry + correction for unmeasured yields from statistical HG model predictions

changes slope at 30A GeV

sharp peak, then under-saturation of strangeness content

Ratio of strange hadron to pion yields

note:
$$\langle K \rangle = 2 (\langle K^+ \rangle + \langle K^- \rangle) = 4 \langle K_S^0 \rangle$$

strangeness to pion ratio peaks sharply at the SPS

SMES explanation:

- entropy, number of s, \bar{s} quarks conserved from QGP to freeze-out
- ratio of $(s + \bar{s})$ / entropy rises rapidly with T in the hadron gas
- E_s drops to the predicted constant QGP level above the threshold of deconfinement :

$$E_{s} \approx \frac{\langle N_{s} + N_{\bar{s}} \rangle}{\langle \pi \rangle} = \frac{0.74 g_{s}}{g_{u} + g_{d} + g_{g}}$$
$$\approx 0.21$$

suggests onset of deconfinement at SPS

Average transverse mass

• Increase of $<m_T>$ for abundant final state particles (π , K, p) slows sharply at the lowest SPS energy

 consistent with approximately constant pressure and temperature in a mixed phase system

(L.van Hove, PLB 89 (1982) 253; M.Gorenstein et al., PLB 567 (2003) 175)

Inverse slope parameters

- the step-like feature observed, not seen for p+p collisions and models without phase transition
- hydrodynamic model with deconfinement phase transition starting at the SPS describes measurements

(model SPheRIO: S.Hama at al., Braz.J.Phys. 34 (2004) 322)

energy dependence of fireball parameters

blast wave parameterisation

(Retiere,Lisa PRC70,044907(2004)

Balance Function: charge correlations in pseudo-rapidity

$$B(\delta\eta) = \frac{1}{2} \left(\frac{N_{(+-)}(\delta\eta) - N_{(--)}(\delta\eta)}{N_{-}} + \frac{N_{(-+)}(\delta\eta) - N_{(++)}(\delta\eta)}{N_{+}} \right)$$

narrowing of the balance function proposed as QGP signature (delayed hadronisation due to phase coexistence)

data compared to shuffled events: $W = (\langle \Delta \eta \rangle_{shuff} - \langle \Delta \eta \rangle_{data}) / \langle \Delta \eta \rangle_{shuff} \cdot 100$ (scrambling of rapidities, retention of global charge conservation)

BF: model comparisons at mid-rapidity

 no anomaly at SPS energy: effects due to local charge conservation and radial flow may dominate (Pratt, Bialas)

microscopic model AMPT with deconfined phase reproduces BF narrowing

Anisotropic flow v_2 of pions: energy dependence

- change from out-of-plane (shadowing) to in-plane (hydro) at AGS
- \bullet rate of increase of v_2 slows between AGS and SPS
- steady rise from SPS to RHIC

(partly due to yield increase at higher p_T)

model interpretation of elliptic flow at SPS and RHIC

QGP + hydrodynamic expansion

Teaney, Lauret, Shuryak PRL 86 (2001) 4783

- statistical hadronisation by quark coalescence
- freeze-out via hadronic re-scattering stage (RQMD)

