

Search for invisible Higgs

With the ATLAS detector

December 11, 2018

Ben Carlson[†]

University of Pittsburgh

†<u>bcarlson@cern.ch</u>

Outline

1. Motivation

- Higgs
- Dark Matter
- Higgs and DM
- 2. Experiment intro
 - The LHC
 - ATLAS detector
 - ATLAS data
- 3. SM Higgs constraints
 - SM constrain inv.

4. H→inv channels

- Production channels
- MET: searching for inv.
- VBF
- $V \rightarrow qq$
- $Z \rightarrow \ell \ell$
- ttH
- Combination

5. Implications

- Limit vs. m_{scalar}
- Comparison to direct detection

6. H→inv next steps

- Monte Carlo
- Trigger for high pileup Run 2

Outline

1. Motivation

- Higgs
- Dark Matter
- Higgs and DM
- 2. Experiment intro
 - The LHC
 - ATLAS detector
 - ATLAS data
- 3. SM Higgs constraints
 - SM constrain inv.

4. H→inv channels

- Production channels
- MET: searching for inv.
- VBF
- $V \rightarrow qq$
- $Z \rightarrow \ell \ell$
- ttH
- Combination

5. Implications

- Limit vs. m_{scalar}
- Comparison to direct detection

6. H→inv next steps

- Monte Carlo
- Trigger for high pileup Run 2

Large Hadron Collider

- The LHC is a pp collider
- Run 1: $\sqrt{s} = 7$ (8) TeV
- Run 2: $\sqrt{s} = 13$ TeV

ATLAS detector

ATLAS data

<u>https://twiki.cern.ch/twiki/bin/view/</u> <u>AtlasPublic/LuminosityPublicResultsRun2</u>

Ben Carlson

The slope dramatically increased over the seven years plotted

At the cost of increasing pileup

multiple interactions per bunch crossing

This talk is only about 2015 + 2016 data, L = 36.1 fb⁻¹

In total, recorded a total integrated luminosity of 149fb⁻¹

come back to a few specific challenges related to pileup at the end of the talk

Outline

1. Motivation

- Higgs
- Dark Matter
- Higgs and DM

2. Experiment intro

- The LHC
- ATLAS detector
- ATLAS data
- 3. SM Higgs constraints
 - SM constrain inv.

4. H→inv channels

- Production channels
- MET: searching for inv.
- VBF
- $V \rightarrow qq$
- $Z \rightarrow \ell \ell$
- ttH
- Combination

5. Implications

- Limit vs. m_{scalar}
- Comparison to direct detection

6. H→inv next steps

- Monte Carlo
- Trigger for high pileup Run 2

ATLAS-CONF-2018-031 Ben Carlson

Constraints on undetected

Ben Carlson

Constraints on undetected ATLAS-CONF-2018-031 Ben Carlson

Hypothetical branching fraction scenario allowed by Higgs measurements

SM

Allows for BSM including

- 1. Invisible
- 2. Not covered by Higgs measurements (4b)
- 3. Deviations in SM Higgs searches not yet sensitive (cc)

BR to SM processes may decrease *Allowing for more...*

Undetected decays

undetected

<26%

Outline

1. Motivation

- Higgs
- Dark Matter
- Higgs and DM

2. Experiment intro

- The LHC
- ATLAS detector
- ATLAS data
- 3. SM Higgs constraints
 - SM constrain inv.

4. H→inv channels

- Production channels
- MET: searching for inv.
- VBF
- $V \rightarrow qq$
- $Z \rightarrow \ell \ell$
- ttH
- Combination

5. Implications

- Limit vs. m_{scalar}
- Comparison to direct detection

6. H→inv next steps

- Monte Carlo
- Trigger for high pileup Run 2

Invisible Higgs at the LHC

Ben Carlson

Missing transverse energy

$MET = \sum measured p_T$ = jet + soft activity

MET gets more difficult with pileup

Trigger

Ben Carlson

- Sets the minimum MET value that can be used
- Trigger > 90% efficient for MET = 150 GeV
- Measure efficiency scale factors if not 100% efficient

Measure efficiency using data from muon trigger reference

Outline

1. Motivation

- Higgs
- Dark Matter
- Higgs and DM

2. Experiment intro

- The LHC
- ATLAS detector
- ATLAS data
- 3. SM Higgs constraints
 - SM constrain inv.

4. H→inv channels

- Production channels
- MET: searching for inv.
- VBF (I worked on)
- V→qq
- $Z \rightarrow \ell \ell$
- ttH
- Combination

5. Implications

- Limit vs. m_{scalar}
- Comparison to direct detection

6. H→inv next steps

- Monte Carlo
- Trigger for high pileup Run 2

Vector boson fusion

Ben Carlson

- Higgs production: VBF
- Signature: large MET
- Trigger: MET

Features of VBF

ATLAS: JHEP 01 (2016) 172 Zeppenfeld, Rainwater, PRD 60 (1999) 113004

Ben Carlson

MET	g soosaaa gereere g QCD	MET > 180 GeV
Dijet event		Jet p _T > 80, 50 GeV (VBF jets) No other jets with p _T > 25 GeV (Jet veto)
m _{jj} , Δφ _{jj} ,Δη _{jj}	$\frac{QQQQQQQQQQ}{g}$	m _{jj} : 1-1.5, 1.5-2.0, ≥2.0 TeV Δφ _{jj} < 1.8 Δη _{jj} > 4.8
Lepton veto	$\begin{array}{c c} q & q' \\ \hline & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \end{array} \\ \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline \end{array} \end{array}$	No electron (muon) with p _T > 7 GeV

VBF backgrounds

Ben Carlson

+ many more diagrams and interference

Estimating W&Z

Ben Carlson

Determine control to signal sample ratio from MC simulation Normalize to data from control sample

Control sample

ATLAS: 1809.06682 (Submitted to PLB)

Ben Carlson

Simultaneously will fit all bins shown here (shown here before fit)

Summary after fit

ATLAS: 1809.06682 (Submitted to PLB)

Ben Carlson

Consistency between CRs

QCD background

ATLAS: 1809.06682 (Submitted to PLB)

Ben Carlson

Estimate using data Define a dedicated sample, test method

• Good agreement between prediction and data

- MET > 100 GeV
- m(jj) > 600 GeV
- $|\Delta \eta(jj)| > 3.0$
- $1.8 < |\Delta \phi| < 2.7$
- $j_3 p_T$: 25-50, $j_4 p_T < 25 \text{ GeV}$

Distributions in SR

ATLAS: 1809.06682 (Submitted to PLB)

Ben Carlson

^{*}In fit, use mjj > 2 TeV as a single bin

Systematics

ATLAS: 1809.06682 (Submitted to PLB)

Ben Carlson

Uncertainty on SR/CR

• Theory

- Renormalization/factorization: 20% before ratio
- CKKW jet matching uncertainty dominates

• Experiment

- Jet scale and resolution: 1-4% in ratio (per term)
- Total impact of JES significant though (29 terms)

- MC stats: dominant unc.
 - More on how to address this later

- Upper limit, $Br(H \rightarrow inv)$ assuming SM cross section
- Lower expected limit means the result is more sensitive

Upper limit on $Br(H \rightarrow inv)$ for ATLAS results in VBF, $m_H = 125 \text{ GeV}$

Result	Expected	Observed	+ 1 σ	-1 <i>σ</i>
13 TeV	28%	37%	39%	20%
8 TeV VBF	35%	30%	49%	25%
8 TeV VBF + low m _{jj}	33%	31%	47%	24%

Outline

1. Motivation

- Higgs
- Dark Matter
- Higgs and DM

2. Experiment intro

- The LHC
- ATLAS detector
- ATLAS data
- 3. SM Higgs constraints
 - SM constrain inv.

4. H→inv channels

- Production channels
- MET: searching for inv.
- VBF
- $V \rightarrow qq$
- $Z \rightarrow \ell \ell$
- ttH
- Combination

5. Implications

- Limit vs. m_{scalar}
- Comparison to direct detection

6. H→inv next steps

- Monte Carlo
- Trigger for high pileup Run 2

W/Z→qq H→inv

Ben Carlson

 $E_{
m T}^{
m miss} = 287~{
m GeV}$ $m(J) = 85~{
m GeV}$ $p_{
m T}(J) = 269~{
m GeV}$

Run: 304308 Event: 133176597 2016-07-23 15:49:18 CEST

$W/Z \rightarrow qq H \rightarrow inv$

W/Z→qq H→inv

<u>JHEP 10 (2018) 180</u> Ben Carlson

Merged

- MET > 250 GeV
- R = 1.0 jet
- Jet mass M_J: 75-100 GeV
- Binned in N_{b-tagged} subjets

Resolved

- MET > 150 GeV
- Two R = 0.4 jets
- Dijet mass m_{jj}: 65-105 GeV
- Binned in N_{b-tags}

The green line includes ggF and $W/Z \rightarrow qq$

W/Z→qq H→inv

JHEP 10 (2018) 180 Ben Carlson

$W/Z \rightarrow qq H \rightarrow inv$

JHEP 10 (2018) 180 Ben Carlson

Merged category

Signal to background increases with MET

Combining all bins: $Br(H \rightarrow inv) < 83\%$ (58% expected)

Outline

1. Motivation

- Higgs
- Dark Matter
- Higgs and DM
- 2. Experiment intro
 - The LHC
 - ATLAS detector
 - ATLAS data
- 3. SM Higgs constraints
 - SM constrain inv.

4. H→inv channels

- Production channels
- MET: searching for inv.
- VBF
- $V \rightarrow qq$
- $Z \rightarrow \ell \ell$
- ttH
- Combination

5. Implications

- Limit vs. m_{scalar}
- Comparison to direct detection

6. H→inv next steps

- Monte Carlo
- Trigger for high pileup Run 2

 $Z \rightarrow \ell \ell \ (\ell = e, \mu)$

V

q

H

Ζ

- MET > 90 GeV
 - $\Delta \Phi(Z,MET) > 2.7$ (Higgs recoiling against Z)

DM coupling to heavy flavor

Cross section for scalar ϕ same as ttH Most channels give: Br(H \rightarrow inv) ~ 100%

Compare with 300% reinterpreted using CMS run 1 data (N. Zhou et al. <u>PRL 113 (2014)</u> <u>151801</u>)

Targeting in lots of top decay channels

Combination

ATLAS-CONF-2018-054

Ben Carlson

Uncertainties correlated when possible; between Run 1 and 2 generally not correlated

Outline

1. Motivation

- Higgs
- Dark Matter
- Higgs and DM

2. Experiment intro

- The LHC
- ATLAS detector
- ATLAS data
- 3. SM Higgs constraints
 - SM constrain inv.

4. H→inv channels

- Production channels
- MET: searching for inv.
- VBF
- $V \rightarrow qq$
- $Z \rightarrow \ell \ell$
- ttH
- Combination

5. Implications

- Limit vs. m_{scalar}
- Comparison to direct detection

6. H→inv next steps

- Monte Carlo
- Trigger for high pileup Run 2

ATLAS: 1809.06682 (Submitted to PLB)

Ben Carlson

Model independent parameterization of sensitivity in terms of $m_{\rm H}$

higher mjj bins contribute more

Direct detection

ATLAS: 1809.06682 (Submitted to PLB) Prog. Part. Nucl. Phys. 85 (2015) 1

Ben Carlson

For the Higgs portal, results complementary with direct detection

(M. Hoferichter et al. <u>1708.02245</u>)

Outline

1. Motivation

- Higgs
- Dark Matter
- Higgs and DM

2. Experiment intro

- The LHC
- ATLAS detector
- ATLAS data
- 3. SM Higgs constraints
 - SM constrain inv.

I worked on both

4. H→inv channels

- Production channels
- MET: searching for inv.
- VBF
- $V \rightarrow qq$
- $Z \rightarrow \ell \ell$
- ttH
- Combination

5. Implications

- Limit vs. m_{scalar}
- Comparison to direct detection

6. H→inv next steps

- Monte Carlo
- Trigger for high pileup Run 2

Monte Carlo

- NLO Sherpa used for strong W/Z + jets background
- Resource limitation from event generation

Monte Carlo

- Reduce time per event (LO)
- Optimize generator for $\Delta \eta > 4.8$ (or m_{jj})

Ben Carlson

MET trigger important for H→inv searches

Acceptance loss if bins below: 200 GeV: 20% 250 GeV: 60% are removed

With 2016 trigger, need to require MET >200 GeV

L1 MET trigger

- L1 trigger MET trigger rate is sensitive to pileup
- Reduced by raising the E_T threshold per trigger tower

HLT MET trigger

- HLT (software) trigger rate also sensitive to pileup
- Reduced the rate by developing new algorithm to remove pileup

51

Discussed

Motivation

Conclusions

- Constraints from SM measurements
- $H \rightarrow inv$ channels
- Interpretation: direct detection
- Next steps: reduce systematics
- Monte Carlo statistics
- Trigger for Run 2
- 150fb⁻¹ of data to analyze
- Other topics to ask me about:
- L1 trigger upgrade for Run 3
- VBF trigger

ATLAS vs. CMS

Summary showing driving channels of sensitivity

SM Higgs

ATLAS-CONF-2018-018 Phys. Lett. B 784 (2018) 345

Ben Carlson

Higgs boson, with $m_{\rm H} = 124.97 \pm 0.24~GeV$

Dark matter

Massey, Kitching, Richard arXiv: 1001.1739

Evidence for new physics: non-luminous dark matter

rotational velocity (km/s) 00 100 100 50000 calculated 50000 tooooo toooo distance from center (light years)

Clearly observed gravitational effects WIMP miracle suggests electroweak scale

Combination tables

ATLAS-CONF-2018-031 Be

Analysis	Integrated luminosity (fb ⁻¹)
$H \rightarrow \gamma \gamma$ (including $t\bar{t}H, H \rightarrow \gamma \gamma$)	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell$)	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H \rightarrow \tau \tau$	36.1
$VH, H \rightarrow b\bar{b}$	36.1
$H \rightarrow \mu \mu$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1

Parameter	(a) no BSM	(b) with BSM
κ _Z	1.07 ± 0.10	restricted to $\kappa_Z \leq 1$
κ_W	1.07 ± 0.11	restricted to $\kappa_W \leq 1$
КЬ	$0.97^{+0.24}_{-0.22}$	$0.85^{+0.13}_{-0.14}$
κ _t	$1.09^{+0.15}_{-0.14}$	$1.05^{+0.14}_{-0.13}$
κτ	$1.02^{+0.17}_{-0.16}$	0.95 ± 0.13
κ_{γ}	$1.02^{+0.09}_{-0.12}$	$0.98^{+0.05}_{-0.08}$
κ _g	$1.00^{+0.12}_{-0.11}$	$0.97^{+0.10}_{-0.09}$
B _{BSM}	-	< 0.26 at 95% CL

Run	Experiment	Br(undetected)
1	ATLAS [1]	<48%
1	ATLAS+CMS [2]	<39%
2	ATLAS [3]	<26%

- [1] JHEP11(2015)206 (1509.00672)
- [2] <u>JHEP08(2016)045</u> (1606.02266)
- [3] <u>ATLAS-CONF-2018-031</u>

Visible + invisible

<u>JHEP08(2016)045</u> (1606.02266) Ben Carlson

CMS result

arXiv: <u>1809.05937</u> (submitted to PLB)

CMS background

arXiv: <u>1809.05937</u> (submitted to PLB)

CMS limit vs. mass

arXiv: <u>1809.05937</u> (submitted to PLB)

Nr.	Parameter		300 fb ⁻¹			3000 fb ⁻¹	
		Theory unc.:			T	heory und	c.:
		All	Half	None	All	Half	None
	κ _g	8.9%	7.1%	6.3%	6.7%	4.1%	2.8%
9	κγ	4.9%	4.8%	4.7%	2.1%	1.8%	1.7%
	κΖγ	23%	23%	23%	14%	14%	14%
	BR _{i,u}	<22%	<20%	<20%	<14%	<11%	<10%

Upper limit on invisible or undetected

General features of VBF

VBF "central region" Zeppenfeld, Rainwater, <u>PRD 60 (1999) 113004</u> Barger, Cheung, Han, <u>PRD 42 (1990) 3052</u>

VBF jet: high- P_T , high- η

Why

- Vector bosons are colorless
- No color between jets

Consequence 1

• Less hadronic activity between jets in VBF

Effective in rejecting non-VBF SM backgrounds

Systematics

Experimental uncertainties dominated by jet veto

Run 1: 50 $Z \rightarrow \ell \ell$ events (15% stat unc.) Once we have 100 $Z \rightarrow \ell \ell$ events (10%),

• Dropped the W/Z const.

		0b	2b
	S	620	40
Margad	В	9,640	410
Merged	S/B	0.06	0.10
	S/Sqrt(B)	6	2
Resolved	S	6,750	145
	В	288,000	4600
	S/B	0.02	0.03
	S/Sqrt(B)	13	2

W/Z→qq H→inv

<u>JHEP 10 (2018) 180</u> Ben Carlson

	Merged topology	Resolved topology					
General require	ments						
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 250 { m ~GeV}$	> 150 GeV					
Jets, leptons	$\geq 1J, 0\ell$	$\geq 2j, 0\ell$					
b-jets	no b -tagged track jets outside of J	$\leq 2 b$ -tagged small-R jets					
	$\Delta \phi(E_{\rm T}^{\rm miss}, J$	or $jj > 120^{\circ}$					
Multijet	ijet $\min_{i \in \{1,2,3\}} \left[\Delta \phi(E_{\mathrm{T}}^{\vec{\mathrm{miss}}}, j_i) \right] > 20^{\mathrm{o}}$						
suppression	$p_{\rm T}^{\rm miss} > 30 \text{ GeV or } \geq 2 \vec{b}$ -jets						
	$\Delta\phi(E_{\rm T}^{\rm \vec{miss}}, p_{\rm T}^{\rm \vec{miss}}) < 90^{\rm o}$						
Signal		$p_{\rm T}^{j_1} > 45 { m GeV}$					
properties		$\sum p_{\rm T}^{j_i} > 120 \ (150) \ {\rm GeV} \ {\rm for} \ 2 \ (\geq 3) \ {\rm jets}$					

Low p

High nurity >	Mono-W/Z signa	al regio	ons						
		0b	0b	1b	1b	2b	0b	1b	2b
Low purity		→HP	\mathbf{LP}	HP	\mathbf{LP}				
	ΔR_{jj}	—	_	—	—	_	< 1.4	< 1.4	< 1.25
	$D_2^{(\beta=1)} p_{\mathrm{T}}^J$ -dep.	pass	fail	pass	fail	_	_	_	_
Lat maga	Mass requirement		m	^{b}J		m_J	<i>m</i>	'ii	m_{ii}
Jet mass]	W/Z	tagger	require	ment	[75, 100]	[65, 105]		[65, 100]

Dijet mass

Mono-Z' signal regions

	0b	0b	1b	1b	2b	0 <i>b</i>	1b	2b
	HP	\mathbf{LP}	HP	\mathbf{LP}				
$D_2^{(\beta=1)} < 1.2$	pass	fail	pass	fail	—	_	_	_
	For m	$Z_{Z'} < 10$	$00 \mathrm{GeV}$:			For $m_{Z'} < 2$	200 GeV:	
	$\overline{[0.85n]}$	$n_{Z'},$	$[0.75m_{Z'},$			$[0.85m_{Z'},$	0.75n	$n_{Z'},$
Mass requirement	$m_{Z'}$	+		$m_{Z'} + m_{Z'}$	10]	$m_{Z'} + 10$	$m_{Z'} + 10$]	
	10]						
[GeV]								
	For m	$z' \ge 10$	00 GeV:			For $m_{Z'} \ge 2$	200 GeV:	
		no m	erged-to	pology		$[0.85m_{Z'},$	$\boxed{0.80n}$	$n_{Z'},$
		sele	ction ap	oplied		$m_{Z'} + 20]$	$m_{Z'} +$	20]

Back of envelope ΔB

- Consider a simple example case
 - Signal yield S = 200; Background yield B = 560.
 - limit ~ 1/significance, significance ~ $S/\sqrt{B + \delta_1^2 + \delta_2^2}$, where δ_1 , δ_2 are uncorrelated syst
 - Say we have $B = 560 \pm \sqrt{560}$ (stat) ± 56 (δ_1) ± 28 (δ_2) $= 560 \pm 24$ (stat) ± 63 (syst)
 - Turning off δ source(s) gives the Δ with respect to the 1st row

	√B	δ 1	δ 2	√ B+δ 1 ² +δ1 ²	∆√в	limit	Δlimit
final	24	56	28	67	-	0.33	-
turn off δ ₁	24	-	28	37	45%	0.18	45% = 1 – 0.18/0.33
turn off δ_2	24	56	-	61	9%	0.30	9% = 1 - 0.30/0.33
turn off δ_1 , δ_2	24	-	-	24	64%	0.12	64% = 1 - 0.12/0.33

Worked out explicitly for the example above

Type of table in the paper

• Observations

- Notice that turning off δ_1 , δ_2 45% and 9% gives us $\Delta = 64\%$
- If you tried to add quadratic 45%
- If you tried to add linearly

 $45\% \oplus 9\%$ you get $46\% \ll 64\%$

45% + 9% you get 54% « 64%

(true answer)
(much much smaller)
(much smaller still)

Background orders

Slide from Bill Balunas Ben Carlson

ATLAS vs. CMS

Summary showing driving channels of sensitivity

Invisible Higgs decays comparisons

For upper limits, smaller is better. 95% conf. level. Selected competitive results are shown.

Parton luminosity

Both S & B increase as $8 \rightarrow 13$ TeV, but B increased more than S

Dark matter at colliders

Ben Carlson

Higgs boson

Heavy flavors

Direct mediator searches: dijet (dilepton) resonances

> Details, see DM working group recommendations: arXiv 1703.05703

A wide range of models for different "x"

t,	$t\overline{t}$	

 $\gamma\gamma$

 $b, b\overline{b}$

Compare to SR1 of run 1 arXiv: <u>1508.07869</u>

• SR selections optimized for 13 TeV backgrounds

Requirement	Run 1	Run 2	Comment	
e(μ)(τ) p _T	< 10 (5) (20) GeV	< 7 (7) (-) GeV	Lepton veto	
Jet p _T	> 75 (50) GeV	> <mark>80</mark> (50) GeV		
Jet pu removal	JVF > 0.5	JVT > 0.59		
Third jet	< 30 GeV	< 25 GeV	VBF	
Δη(jj)	> 4.8	> 4.8	VBF	
m(jj)	> 1 TeV	1-1.5, 1.5-2.0, > 2.0 TeV	Binned	
Δφ(jj)	< 2.5	< 1.8		
MET	>150 GeV	>180 GeV	Invisible	
MHT	-	150 GeV	Cleaning	
Δφ(j,MET)	> 1.6 (1.0)	> 1.0 (1.0)	Cleaning	

- Very similar selections to run 1 (though slightly tighter)
- Main differences that impact sensitivity:
 - Bins of m(jj): best sensitivity from m(jj) > 2 TeV
 - Tighter MET: indirectly because of pileup, causes relative ~10% increase in limit

Ben Carlson

W: non-prompt electrons

ATLAS: 1809.06682 (Submitted to PLB)

• Determine ratio from dedicated fake enriched control sample

• Float normalization in the fit, but fix ratio between bins

- W⁺/W⁻ cross sections not equal (in pp collisions)
- Non-prompt contribution charge symmetric

fake enriched fake depleted

QCD background

Worth mentioning how we get the QCD multi jet component

QCD events reconstructed at high MET due to jet mis-measurement

Estimate QCD background by randomly varying each jet by resolution

Distributions

Fit model

• Fit model imposes estimates W(Z) separately

- Normalization of mis-ID electron also constrained by fit
- Each m(jj) bin is treated independently, e.g., separate normalization factors $k_W(k_Z)$ for each bin
- Note: essentially the run 1 fit model, except that we replaced M_T with MET sig. bins and have 2 fit parameters, for W(Z) separately

Summary of fit model, each bin of m(jj) is treated separately according to the model shown here.

		$B_{\rm SR} \cdot \underbrace{N_{\rm CR}/B_{\rm CR}}_{\beta \text{ normalizatio}}$	n	•		Actually in cha	binnea rge
	SR	ee	μμ	e MET sig. > 4	e MET sig. < 4	μ	
Signal	μxS						
Ζ	$k_Z \ge B_Z$	k _Z x B _Z	kz x Bz	k _Z x B _Z	$k_Z \ge B_Z$	$k_Z \ge B_Z$	
W+jets	kw x Bw	$k_W \mathrel{x} B_W$	kw x Bw	kw x Bw	$k_W \mathrel{x} B_W$	$k_W \ge B_W$	
mis-ID				β	Rxβ		
$B_{W(}$	_{z)} : predict from MC	ion		R: ratio loose no (see last	o from ot tight t slide)	B: normaliza of mis-IL componer	tion) nt

Mono-jet interpreted as Higgs + 1 jet

Run: 302393 Event: 738941529 2016-06-20 07:26:47 CEST

MET

MET = 1735 GeV

Extreme signature: One high-p_T jet recoiling against "nothing"

Tracks

Hadronic calorimeter energy

EM calorimeter energy

ISR jet

High-p_T

0000

00000

"Longitudinal" view

let

 $p_{\rm T} = 1707 \, {\rm GeV}$

Jet recoiling MET

B. Carlson

JHEP 01 (2018) 126

EXPERIMENT

78

against invisible $(\mathbf{X}\mathbf{X})$

Transverse view

Higgs + 1 jet

 $W \rightarrow \ell v$

JHEP 01 (2018) 126 MET > 250 GeVEasy to trigger GeV 10⁷ Data 2015+2016 ATLAS Kills QCD 10⁶ Standard Model √s = 13 TeV, 36.1 fb⁻¹ $\Delta \phi(j, MET) > 0.4$ $Z(\rightarrow vv) + jets$ Signal Region 10⁵ $W(\rightarrow lv) + jets$ $p_{T}(j1)>250 \text{ GeV}, E_{T}^{miss}>250 \text{ GeV}$ Events $Z(\rightarrow II) + jets$ 10⁴ tt + single top Lepton veto kills $p_T(j_1) > 250 \text{ GeV}$ Diboson 10³ Top (mostly) multijets + ncb $N_{jets} \leq 4$ $m(\widetilde{b}, \widetilde{\chi})^0$ = (500, 495) GeV 10² $(m_{_{DM}}, M_{_{med}})$ = (400, 1000) GeV ADD, n=4, M_=6400 GeV Blue background: Signal DM 10 *l* is not reconstructed Signal SUSY multijets + ncb 10^{-1} 1.2 Data / SM Stat. + Syst. Uncertainties 0.8 400 500 600 700 800 900 1000 1100 300 1200 E^{miss}_T [GeV] $MET = E_T^{miss}$

Dominant backgrounds: $W \rightarrow \ell v$ (lost lepton) and $Z \rightarrow vv$

Constraining backgrounds

Ζ

$$\ell = e(\mu)$$

Background estimation

Ben Carlson

Estimate from CRs using simultaneous fit

- W $\rightarrow \ell v$
- $Z \rightarrow \ell \ell$

Constraining backgrounds

- $W \rightarrow \ell \nu$ constraint motivated by branching fractions
- x10 more $W \rightarrow \ell \nu$ than $Z \rightarrow \ell \ell$
- Uses theory calculation leads to small W \rightarrow Z uncertainty (J. Lindert et al. <u>1705.04664</u>)

$Z \rightarrow \ell \ell \ background$

Z+jets falls off rapidly with MET

Lattice impact

Higgs portal model

CMS Run-1 paper on VBF and ZH, EPJC 74 (2014) 2980

9 Dark matter interactions

We now interpret the experimental upper limit on $\mathcal{B}(H \rightarrow inv)$, under the assumption of SM production cross section, in the context of a Higgs-portal model of DM interactions [7–9]. In these models, a hidden sector can provide viable stable DM particles with direct renormalizable couplings to the Higgs sector of the SM. In direct detection experiments, the elastic interaction between DM and nuclei exchanged through the Higgs boson results in nuclear recoil which can be reinterpreted in terms of DM mass, M_{χ} , and DM-nucleon cross section. If the DM candidate has a mass below $m_{\rm H}/2$, the invisible Higgs boson decay width, $\Gamma_{\rm inv}$, can be directly translated to the spin-independent DM-nucleon elastic cross section, as follows for scalar (S), vector (V), and fermionic (f) DM, respectively [8]:

$$\sigma_{\rm S-N}^{\rm SI} = \frac{4\Gamma_{\rm inv}}{m_{\rm H}^3 v^2 \beta} \frac{m_{\rm N}^4 f_{\rm N}^2}{(M_{\chi} + m_{\rm N})^2},$$
(8)

Ben Carlson

$$\sigma_{\rm V-N}^{\rm SI} = \frac{16T_{\rm inv}M_{\chi}^{+}}{m_{\rm H}^{3}v^{2}\beta(m_{\rm H}^{4} - 4M_{\chi}^{2}m_{\rm H}^{2} + 12M_{\chi}^{4})} \frac{m_{\rm N}^{+}f_{\rm N}^{2}}{(M_{\chi} + m_{N})^{2}},$$
(9)

$$\sigma_{\rm f-N}^{\rm SI} = \frac{8\Gamma_{\rm inv}M_{\chi}^2}{m_{\rm H}^5 v^2 \beta^3} \frac{m_{\rm N}^4 f_{\rm N}^2}{(M_{\chi} + m_{\rm N})^2}.$$
 (10)

Here, $m_{\rm N}$ represents the nucleon mass, taken as the average of proton and neutron masses, 0.939 GeV, while $\sqrt{2}v$ is the Higgs vacuum expectation value of 246 GeV, and $\beta = \sqrt{1 - 4M_{\chi}^2/m_{\rm H}^2}$. The dimensionless quantity $f_{\rm N}$ [8] parameterizes the Higgs-nucleon coupling; we take the central values of $f_{\rm N} = 0.326$ from a lattice calculation [69], while we use results from the MILC Collaboration [70] for the minimum (0.260) and maximum (0.629) values. We convert the invisible branching fraction to the invisible width using $\mathcal{B}(\rm H \rightarrow inv) = \Gamma_{\rm inv}/(\Gamma_{\rm SM} + \Gamma_{\rm inv})$, where $\Gamma_{\rm SM} = 4.07$ MeV.

VBF trigger

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ TriggerOperationPublicResults#L1Topo_Operation_VBF_2018

Upgrade (starting now!)

Ben Carlson

Impact: jets and MET

ATL-COM-DAQ-2014-087 L1Calo public (July 2018)

Ben Carlson

Improving MET

MET is sensitive to pileup Working on pileup subtraction for L1

Dramatic improvement

(Uses additional granularity to target electrons)

Lots of rate saved, use it for DM triggers?

MET comparison

