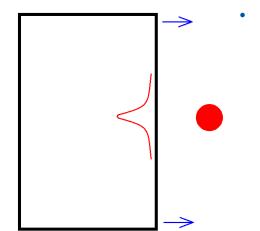
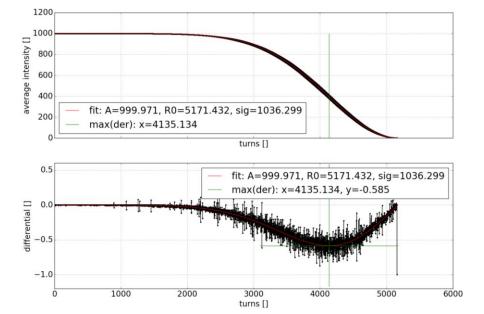
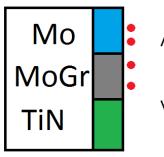


MD4830: Assessing Collimator Coating Robustness with Beam Scraping


<u>A. Mereghetti</u>, on behalf of the LHC Collimation Team F. Carra, A. Lechner

MD Merit


- In HiRadMat tests, Mo-coated MoGr jaw samples showed a resistance to beam impact better than that of Cu-coated samples - HL-LHC-like loads on the coating in a single-pass approach;
- Aim: to test endurance of the coating layers of the TCSPM.D4R7.B2 in a configuration closer to the operational one (multi-turn environment) than that of HiRadMad:
 - Induce damage on coating layer;
 - Assess with measurements a safe value of energy/power deposition in Mo layer;
- Direct consequences of measurements on:
 - Alignment procedures of Mo-coated TCSPM collimators, in case BLM-based procedure is followed (e.g. because BPMs are not temporarily usable)
 - Assessment of loads on the Mo-layer in case of beam losses with minimum life times;


- Measurements performed scraping the ion beam (trains) at flat top with one jaw of the prototype TCSPM.D4R7.B2
 - Power deposition concentrate into the Mo-layer, thanks to scraping movement and use of ions (energy loss dominated by ionisation);
 - Scraping only a fraction of the beam allows to repeat the scraping action more than once with the same beam;
 - Configuration similar to alignment situation (apart from beam intensity!);

Energy Deposition Considerations

Instead of full beam scraping (picture on the left), perform a sizeable step to scrape the beam (enough to have a sizeable signal on BCT);

Perform a scraping step per transverse position of the 5th axis;

- Heating tests (lab) on Mo-coated MoGr samples (M. Taborelli et al.):
 - Block heated for 48h @400C: no signs of coating peeling;
 - Small sample @1000C: no signs of coating peeling either;
- Thermo-mechanical analysis on going (EN/MME), to verify how many ions need to be scraped to reach similar temperatures:
 - Scraping step size will be ~ 0.5σ , implying 20-100ms of scraping time;
 - Beam scraping in the vicinity of 1σ, where the number of scraped ions scraped is maximized for the same scraping step;
 - High thermal conductivity may imply large beam intensity scraped to get to desired temperatures;

LHC Collimation

Project

CERN

20 Nov 2018

Procedure

Main activities:

- Inject ion beams and ramp energy to FT; 1.
 - During injection, get normaised emittance with wire scan and BSRT;
- Centre collimator with BPMs: 2.
- Scrape beam with TCP.D6R7.B2 down to $3-3.5\sigma$ (beam σ) i.e. edge of Gaussian core; 3.
- Align TCPSM 5th axis to Mo layer and scrape the beam with one jaw: 4.
 - 1st spot: aim at 400C 5th axis position: 9.87 mm; 1.
 - 2^{nd} spot: aim at <400C (eg 200C) 5^{th} axis position: 7.87 mm; 2.
- Align TCPSM 5th axis to MoGr and scrape the beam with one jaw (same steps as for Mo layer): 5.
 - 1st spot: 5th axis position: 2 mm; 1.
 - 2nd spot: 5th axis position: 4 mm; 2.

Still to finalise:

- Detailed assessment of scraping steps extension and desired scraped intensity per step; 1.
- Total beam intensity to be injected; 2.
- Changes to BLM thresholds? 3.
- Actual procedure inspection to be finalized with EN/STI; 4.

Requests:

- 6h MD time should be enough for a second ramp, if needed;
- Measurements at FT (no Q-change/squeeze/collisions i.e. $\beta^*=1m$); ۲
- Tests only B2 (TCSPM available only there);

Back-up Slides