SURFACE EFFECTS FOR ELECTRON CLOUD

IN EN

R. Cimino LNF-INFN

Introduction:
 E-cloud mitigation methods in a global scenario:

- compatibility with impedance, vacuum, etc.
- The seed of e⁻cloud: number of photoelectrons (PY) and their effect to the surface.

OUTI INF

- ➤ How surface sensitive is SEY?
 - Role of Temperature, overlayer thickness, etc

Conclusions

Alternative solution: Laser treated materials (see: Oleg Talk)

INEN

Limiting SEY with LASE-Cu

INEN

Impedance issues?

Impedance issues?

WHEN OPERATING AT LOW TEMPERATURE

Saturated vapour pressure from Honig and Hook (1960) (C2H6 Thibault et al.)

10

Temperature (K)

Beam screen Beam screen

100

Independently on the substrate treatment, the thermal stability against small BS T fluctuation has to be guaranteed

ICFA 2019 - Zermatt - 25-09-2019

R. Cimino

He

H2

N2

Ar

•02 CH4

C2H6

H2O

PH2 300K

PCH4 300K

PCO_300K

PCO2 300K

1000

500 h beam life tim

We studied thermal stability @ LNF within EuroCirCol collaboration

Ultra high vacuum systems

- LNF-cryogenic manipulator
- Sample at **15-300 K**

Secondary Electron Yield (SEY) measurements Equipment : Electron gun, Faraday cup

Temperature Programmed Desorption (TPD) and Mass Spectrometry measurements

Equipment : QMS (Hiden HAL 101 Pic)

ICFA 2019 - Zermatt - 25-09-2019

TPD from unbaked lase-Cu for temperature induced vacuum transients study

Comparative study of TPD from flat poly-Cu and LASE-Cu unbaked samples using different gases (Ar, CH₄, CO and H₂)

TPD from unbaked lase-Cu for temperature induced vacuum transients study: Ar

Single TPD peak at ~30 K corresponding to the desorption of a condensed thick Ar layer

Desorption temperature determined by the weak Ar-Ar van der Waals interaction energies

L. Spallino, M. Angelucci, R. Larciprete, R. Cimino, Appl. Phys. Lett. 114, 153103 (2019)

Temperature (K)

ICFA 2019 - Zermatt - 25-09-2019

TPD from unbaked lase-Cu for temperature induced vacuum transients study: CH₄

L. Spallino, M. Angelucci and R. Cimino, to be published

Conceptually identical results have been obtained with CH₄

TPD from unbaked lase-Cu for temperature induced vacuum transients study: CO

L. Spallino, M. Angelucci and R. Cimino, to be published

Conceptually identical results have been obtained with CO

ICFA 2019 - Zermatt - 25-09-2019

TPD from unbaked lase-Cu for temperature induced vacuum transients study: H₂

TPD of 100 L H₂ dosed on poly-Cu and LASE-Cu samples held at <u>T~15-18 K</u>

No TPD signal should be observed by considering the H₂ vapor suture pressure curve!!!

The wide distribution of high energy adsorption sites within the inner pore is responsible for the H₂ TPD signal from LASE-Cu sample

L. Spallino, M. Angelucci and R. Cimino, to be published

TPD from unbaked lase-Cu for temperature induced vacuum transients study

Saturated vapour pressure from Honig and Hook (1960)

L. Spallino, M. Angelucci and R. Cimino, to be published

Further studies and <u>electron/photon</u> stimulated desorption are necessary to validate/optimize LASE-Cu at low T.

Low SEY AND Low impedance AND Vacuum compatibility, etc. must be granted!

E-cloud mitigation methods in a global scenario: compatibility with impedance, vacuum, etc.

The seed of e⁻cloud (and of single bunch inst.): number of photoelectrons (PY) and their effect to the surface.

OUTI INF

- How surface sensitive is SEY?
 - Role of Temperature, overlayer thickness, etc

ICFA 2019 - Zermatt - 25-09-2019

We can measure PY and R in operational conditions

The Beamline

A. Sokolov, et al., Journal of Synchrotron Radiation 25, 100 (2018).

Experimental Parameters

- Phot. Energy range 35÷1800 eV
- Beam height h=0.3 mm
- Incident Beam measurement
- GaAsP Photodiodes (4x4mm) (0.1*4mm)
- Incident angle 0.25, 0.5, 1°

The Reflectometer

A.A.Sokolov, et al, Proc. of SPIE92060J-1-13(2014)

Axis	Hardware	Range	Pos. accuracy
Azimuth angle β	HUBER 430	-180° - 180°	3.6"
Sample angle θ	HUBER 411	-90° - 270°	3.6"
Detector angle 20	HUBER 411	-180° - 180°	3.6"
Detector off-plane (2 axes)	Ceramic motors	-25 mm – 25 mm (-4° - 4°)	50 nm
Sample Adjustment Tx, Ty, Tz	Ceramic motors	-20 mm – 20 mm (not simul.)	500 nm
Sample Adjustment Rx, Ry, Rz	Ceramic motors	-10°-10° (not simul.)	1"

LHC Saw Tooth

The sample studied: Cu (different Roughness) LHC - Saw Tooth LASE Cu+ amorphous Carbon Thin Film

And: NEG, Stainless Steel, ...

LASE Cu

Cu LHC ICFA 2019 - Zermatt - 25-09-2019

R. Cimino

In all cases, PY is higher at higher photon energies.

- The PY dependence on θ_i is consistently dimmed and finally washed out when surface Ra is increasing.
- In all cases, the Cu-L2-3 absorption edge at 930-950 eV is visible and cause an increase in the measured PY.
- In all spectra we measure a significant effect due to the C K-edge at 280 eV and O K-edge at 530 eV (surf. Contaminants)
- Roughness does influence the PY. The lower is Ra, the highest is the measured PY.

Selected results: Photo Yield

E. La Francesca et al: submitted to PR ST

Photon interaction studies (RT) @ DA Φ NE-L

Photon interaction studies (RT) @ DA Φ NE-L

Still in progress!

ICFA 2019 - Zermatt - 25-09-2019

R. Cimino

Preliminary results

₋₂ XPS₀Map₂

3

ကု

Ņ

 $\overline{\mathbf{x}}$

0

2

ŝ

3

IFN OUTLINE → Introduction:

- E-cloud mitigation methods in a global scenario: compatibility with impedance, vacuum, etc.
- The seed of e⁻cloud: number of photoelectrons (PY) and their effect to the surface.
- How surface sensitive is SEY?
 - Role of Temperature, overlayer thickness, etc

Conclusions

SEY behavior is strongly influenced by the chemical state of the surface

L. A. Gonzalez et al., AIP Adv. (2017)

Contaminants from atmosphere ~ 5 - 20 nm

SEY at LT (20 K) ~ SEY at RT but...

SEY is highly sensitive to the presence of adsorbates, even at sub-monolayer coverages

 SEY of cold surfaces influenced by gas physisorption

ICFA 2019 - Zermatt - 25-09-2019

SEY Surface sensitivity: gases on LT Cu

SEY is an intrinsic material property strongly sensitive to the surface composition and chemical state

Element and coverage specific

ICFA 2019 - Zermatt - 25-09-2019

We followed the growth of thin a-C layers on Cu with XPS to measure its thickness

We followed the growth of thin a-C layers on Cu with XPS to measure its thickness

We followed the growth of thin a-C layers on Cu with XPS to measure its thickness

In XPS:

$$I_{Cu}^{C} = (I_{Cu,bulk}^{C}) * exp(-d/\lambda_{Cu,C})$$

$$I_C = I_{C,bulk} * (1 - exp(-d/\lambda_{C,C}))$$

where **d** is the unknown thickness and λ is the inelastic mean free path.

We followed the growth of thin a-C layers on Cu with XPS to measure its thickness

In XPS:

$$I_{Cu}^{C} = (I_{Cu,bulk}^{C}) * exp(-d/\lambda_{Cu,C})$$

$$I_C = I_{C,bulk} * (1 - exp(-d/\lambda_{C,C}))$$

where **d** is the unknown thickness and λ is the inelastic mean free path.

We also calibrate the 1ML Carbon signal with the one emitted from Gr/Cu (1 Ml)

HOW A COATING MODIFY SEY? (the case of a-C on Cu)

By simultaneously follow SEY
changes with a- C thickness we can
measure SEY dependence on actual
a-C coverage.

 δ_{max} , E_{max} sets to their (a-C) final values quite soon, while minor changes still occurs at higher doses in the very low (< ~ 20 eV) and quite high primary energy (> ~400 eV) part.

100

A. Novelli et al., in preparation

Clean 0.5 ML

1,5 ML

5 ML

15 ML

20 ML 27.5 ML

1,6 -

1,4 •

1,2 -

1,0 -

0,8 -

0,6

0,4 -

0,2 -

0,0

S

800

900

1000

-Preliminary-

Increasing C

600

E_c (eV)

Could follow d_{max} vs C coverages

Could follow E_{max} vs C coverages

→ 15-20 MI (~ 5-6 nm) of a-C determines SEY properties.

A. Novelli et al., in preparation

ICFA 2019 - Zermatt - 25-09-2019

DO WE LEARN SOMETHING ON SCRUBBING?

- To have a fully scrubbed Surface, we need more than 5-6 nm of (low SEY) a- C covering our surface.
- Original Contaminant thickness depends on the material and material cleaning. (can be between 4 to 20 nm)
- During irradiation (ph and e⁻) both desorption and substrate chemical modifications occurs.
- Are we always sure that we are left with the minimum C coverage to reduce SEY below 1.1 ?
- Why photons and low energy electrons (below 50 eV) behaves differently than high energy electrons (above 50 eV up to 3keV)?

CONCLUSIONS

- All new materials should be validated in all aspects in a global approach.
- Laboratory experiments have been and must be refined.
- Material studies in conditions as close as possible to operating ones (preparation, Low Temperature & geometry) is mandatory.
- There are still open aspects in the scrubbing process.
- Very thin coatings (about 6 nm for a-Carbon) are enough to completely reduce clean poly - Cu SEY to the one of a-C.

Thank you for your attention

Thanks to the low temperature team at LNF: M. Angelucci, A. Liedl, R. Larciprete e L. Spallino.

Tanks to the technical support of **DAΦNE-L** Team: A. Grilli, M. Pietropaoli, A. Raco, V. Tullio, V. Sciarra and G. Viviani

EUROCITCO THANKS TO EUROCITCOL PROJECT AND TO ITS SCIENTIFIC COMMUNITY

Thanks to MICA supporting project funded by INFN-SNC5

Thanks to CERN-INFN bilateral agreement KE3724 /TE/HL-LHC-Addendum No. 4 to Agreement TKN3083

ICFA 2019 - Zermatt - 25-09-2019