Diagnostics with Quadrupolar Pick-ups

Adrian Oeftiger
25 Sep 2019, MCBI 2019
Motivation

1st order

rigid dipolar centroid oscillation:

- Newton’s third law, \(\text{actio} = \text{reactio} \)
- no direct space charge (SC)
 [except higher-order projections]
Motivation

1st order

rigid dipolar centroid oscillation:
- Newton’s third law, actio = reactio
- no direct space charge (SC) [except higher-order projections]

⇒ measure direct space charge through frequency shift of beam size oscillations about matched $\sigma_{x,y}$

⇒ during this campaign, found many new insights on QPU spectrum

2nd order

quadrupolar envelope oscillation:
- defocused by transverse space charge force
- frequency of envelope oscillation decreases with SC
What about quadrupolar pick-ups?

- non-invasive (and thus non-destructive) measurement
 - contains info on transverse emittances $\epsilon_{x,y}$ and linear coupling
 - even with quadrupolar excitation: beam transfer function measurement without significant emittance growth ($\Delta \epsilon / \epsilon < 5\%$)
 - modes and their amplitudes in quadrupolar spectrum provide hint at beam dynamics
What about quadrupolar pick-ups?

- non-invasive (and thus non-destructive) measurement
 - contains info on transverse emittances ϵ_x,ϵ_y and linear coupling
 - even with quadrupolar excitation: beam transfer function measurement without significant emittance growth ($\Delta \epsilon / \epsilon < 5\%$)
 - modes and their amplitudes in quadrupolar spectrum provide hint at beam dynamics

- measures *coherent* mode tunes, not incoherent spreads
 - cannot infer transverse distribution type!
 - can express coherent tune shifts in units of RMS equivalent K-V SC tune shift
 - different transverse distributions with same RMS characteristics *yield same coherent tune shifts*
What about quadrupolar pick-ups?

- non-invasive (and thus non-destructive) measurement
 - contains info on transverse emittances $\epsilon_{x,y}$ and linear coupling
 - even with quadrupolar excitation: beam transfer function measurement without significant emittance growth ($\Delta\epsilon/\epsilon < 5\%$)
 - modes and their amplitudes in quadrupolar spectrum provide hint at beam dynamics

- measures *coherent* mode tunes, not incoherent spreads
 - cannot infer transverse distribution type!
 - can express coherent tune shifts in units of RMS equivalent K-V SC tune shift
 - different transverse distributions with same RMS characteristics *yield same coherent tune shifts*

- recent push from coasting beam to bunched beam!
 - synchrotron motion \rightsquigarrow much more dynamics
 - chromaticity, synchrotron sidebands (cf. my HB2018 contribution ↗)
 - started to study head-tail instabilities vs. second-order modes, e.g. $\langle x \cdot \frac{\Delta p}{p_0} \rangle$
 - new perspectives!? In particular for space charge vs. head-tail instabilities
 \implies a lot remains to be done!
Quadrupolar Pick-up

Schematics of a quadrupolar pick-up (see Ref. [1]):

Induced voltage on electrodes:

\[U_{\text{right}} \propto I_{\text{beam}} (1 + z_1 x + z_2 + ...) \]
\[U_{\text{left}} \propto I_{\text{beam}} (1 - z_1 x + z_2 + ...) \]
\[U_{\text{top}} \propto I_{\text{beam}} (1 + z_1 y - z_2 + ...) \]
\[U_{\text{bottom}} \propto I_{\text{beam}} (1 - z_1 y - z_2 + ...) \]

where

\[z_{1x} \propto \frac{\langle x \rangle}{d}, \]

\[z_{1y} \propto \frac{\langle y \rangle}{d}. \]
Schematics of a quadrupolar pick-up (see Ref. [1]):

Induced voltage on electrodes:

\[U_{\text{right}} \propto I_{\text{beam}} (1 + z_{1x} + z_2 + ...) \]
\[U_{\text{left}} \propto I_{\text{beam}} (1 - z_{1x} + z_2 + ...) \]
\[U_{\text{top}} \propto I_{\text{beam}} (1 + z_{1y} - z_2 + ...) \]
\[U_{\text{bottom}} \propto I_{\text{beam}} (1 - z_{1y} - z_2 + ...) \]

where

\[z_{1x} \propto \frac{\langle x \rangle}{d}, \]
\[z_{1y} \propto \frac{\langle y \rangle}{d}, \] and
Quadrupolar Pick-up

Schematics of a quadrupolar pick-up (see Ref. [1]):

Induced voltage on electrodes:

\[U_{right} \propto I_{beam} \left(1 + z_{1x} + z_2 + \ldots \right) \]
\[U_{left} \propto I_{beam} \left(1 - z_{1x} + z_2 + \ldots \right) \]
\[U_{top} \propto I_{beam} \left(1 + z_{1y} - z_2 + \ldots \right) \]
\[U_{bottom} \propto I_{beam} \left(1 - z_{1y} - z_2 + \ldots \right) \]

where

\[z_{1x} \propto \frac{\langle x \rangle}{d}, \]
\[z_{1y} \propto \frac{\langle y \rangle}{d}, \quad \text{and} \]
\[z_2 \propto \frac{\langle x^2 \rangle - \langle y^2 \rangle}{d^2} = \frac{\sigma_x^2 - \sigma_y^2 + \langle x \rangle^2 - \langle y \rangle^2}{d^2} \] (neglecting dispersion)
Quadrupolar Pick-up

Schematics of a quadrupolar pick-up (see Ref. [1]):

Induced voltage on electrodes:

\[U_{\text{right}} \propto I_{\text{beam}}(1 + z_1 x + z_2 + ...) \]
\[U_{\text{left}} \propto I_{\text{beam}}(1 - z_1 x + z_2 + ...) \]
\[U_{\text{top}} \propto I_{\text{beam}}(1 + z_1 y - z_2 + ...) \]
\[U_{\text{bottom}} \propto I_{\text{beam}}(1 - z_1 y - z_2 + ...) \]

\[\Rightarrow \] combine voltages to measure dipolar beam moments (usual BPM):

\[\langle x \rangle \propto U_{\text{right}} - U_{\text{left}} \]
\[\langle y \rangle \propto U_{\text{top}} - U_{\text{bottom}} \]
Quadrupolar Pick-up

Schematics of a quadrupolar pick-up (see Ref. [1]):

Induced voltage on electrodes:

\[U_{right} \propto I_{beam}(1 + z_{1x} + z_2 + ...) \]
\[U_{left} \propto I_{beam}(1 - z_{1x} + z_2 + ...) \]
\[U_{top} \propto I_{beam}(1 + z_{1y} - z_2 + ...) \]
\[U_{bottom} \propto I_{beam}(1 - z_{1y} - z_2 + ...) \]

\[\Rightarrow \text{combine voltages to measure dipolar beam moments (usual BPM):} \]
\[\langle x \rangle \propto U_{right} - U_{left} \]
\[\langle y \rangle \propto U_{top} - U_{bottom} \]

\[\Rightarrow \text{or combine voltages to measure quadrupolar beam moments:} \]
\[z_2 \propto \sigma_{x}^2 - \sigma_{y}^2 + \langle x \rangle^2 - \langle y \rangle^2 \]
\[\propto U_{right} + U_{left} - U_{top} - U_{bottom} \]
Time Domain \leftrightarrow Frequency Domain

Time domain very challenging:

- accurately resolving the beam size moment $\sigma_x^2 - \sigma_y^2$ requires removal of (strong) dipolar component in $z_2 \propto \sigma_x^2 - \sigma_y^2 + \langle x \rangle^2 - \langle y \rangle^2$

 \rightarrow beautiful measurements of injection mismatch and transverse emittances $\epsilon_{x,y}$
 (no dipolar contribution to magnetic signal)
 \rightarrow unfortunately equipment difficult to operate, later removed from PS

- lately also differential measurements in LHC, cf. Ref. [3]
Time Domain \xrightarrow{\sim} Frequency Domain

Time domain very challenging:

- accurately resolving the beam size moment \(\sigma_x^2 - \sigma_y^2 \) requires removal of (strong) dipolar component in \(z_2 \propto \sigma_x^2 - \sigma_y^2 + \langle x \rangle^2 - \langle y \rangle^2 \)

- Ref. [2] A. Jansson’s PhD thesis: clever idea, magnetic quadrupolar pick-up → beautiful measurements of injection mismatch and transverse emittances \(\epsilon_x, \epsilon_y \) (no dipolar contribution to magnetic signal)
 → unfortunately equipment difficult to operate, later removed from PS

- lately also differential measurements in LHC, cf. Ref. [3]

Frequency domain more accessible:

- spectral measurements don’t care about differential offsets, dipolar contribution oscillates at distinct frequency etc.
 → idea: resolve quadrupolar beam oscillation modes accurately!
 → determine frequency shifts due to space charge
 → determine energy/amplitudes in modes as measure of mismatch

- CERN LHC injectors equipped with stripline pick-ups, new 3-channel frontend: horizontal and vertical dipolar + quadrupolar signals!

- GSI SIS-18 also equipped with 2 QPUs!
Overview

Frequency domain measurements in PS:

- to my surprise, I found super many modes in the spectrum when I first looked at injection...
 - in the meantime, quite a few experiments identified them!

- beam size oscillation itself difficult to observe at injection
 - developed beam transfer function (BTF) measurement technique with transverse feedback as quadrupolar kicker
Overview

Frequency domain measurements in PS:

- to my surprise, I found super many modes in the spectrum when I first looked at injection...
 → in the meantime, quite a few experiments identified them!
- beam size oscillation itself difficult to observe at injection
 → developed beam transfer function (BTF) measurement technique with transverse feedback as quadrupolar kicker

Structure of this talk:

1. second-order mode overview in simulations
2. mode identification at CERN PS injection
 - dipolar modes
 - Chernin’s odd (tilting) modes
 - coherent dispersion modes
3. the missing puzzle piece: even envelope modes $\sigma_{x,y}$?
4. quadrupolar BTF and space charge
Part I: Second-order Modes in Simulations
Quad. Spectrum: Coasting KV Beam

<table>
<thead>
<tr>
<th>bunched</th>
<th>transv. distr.</th>
<th>synchrotron motion</th>
<th>dispersion</th>
<th>chromaticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>KV (uniform)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Turn 0 out of 256

Diagram showing the evolution of the beam distribution over a turn.
Quad. Spectrum: Coasting KV Beam

<table>
<thead>
<tr>
<th>bunched</th>
<th>transv. distr.</th>
<th>synchrotron motion</th>
<th>dispersion</th>
<th>chromaticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>KV (uniform)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Spectrum of $\sigma^2_x - \sigma^2_y$

Fractional quadrupolar tune

Spectral amplitude

Q_x, Q_y, $2Q_x$, $2Q_y$
Quad. Spectrum: + Dispersion

<table>
<thead>
<tr>
<th>bunched</th>
<th>transv. distr.</th>
<th>synchrotron motion</th>
<th>dispersion</th>
<th>chromaticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>KV (uniform)</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Spectrum of $\sigma_x^2 - \sigma_y^2$

Fractional quadrupolar tune

Spectral amplitude

Turn 0 out of 256

Q_x Q_y $2Q_x$ $2Q_y$
<table>
<thead>
<tr>
<th>bunched</th>
<th>transv. distr.</th>
<th>synchrotron motion</th>
<th>dispersion</th>
<th>chromaticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Gaussian</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Quad. Spectrum: RMS-equiv. Gaussian

Spectrum of \(\sigma_x^2 - \sigma_y^2 \)

Fractional quadrupolar tune

<table>
<thead>
<tr>
<th>Spectral amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0015</td>
</tr>
<tr>
<td>0.0010</td>
</tr>
<tr>
<td>0.0005</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
</tbody>
</table>

FAIR GmbH | GSI GmbH
Adrian Oeftiger
25 Sep 2019
Quad. Spectrum: Bunched Beam

<table>
<thead>
<tr>
<th>bunched</th>
<th>transv. distr.</th>
<th>synchrotron motion</th>
<th>dispersion</th>
<th>chromaticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>KV (uniform)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Spectrum of $\sigma^2_x - \sigma^2_y$
Quad. Spectrum: + Finite Q_s

<table>
<thead>
<tr>
<th>bunched</th>
<th>transv. distr.</th>
<th>synchrotron motion</th>
<th>dispersion</th>
<th>chromaticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>KV (uniform)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

- experimental parameters (here $N = 4 \times 10^{11}$ ppb)
- evident quadrupolar betatron bands below $2Q_{x,y}$
- coherent dispersive mode slightly below Q_x (shifted by space charge!)

→ **single peak-like** – unlike experimental observation
Quad. Spectrum: + Finite Chromaticity

<table>
<thead>
<tr>
<th>bunched</th>
<th>transv. distr.</th>
<th>synchrotron motion</th>
<th>dispersion</th>
<th>chromaticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>KV (uniform)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

- experimental parameters (here $N = 4 \times 10^{11}$ ppb)
- evident quadrupolar betatron bands below $2Q_{x,y}$
- coherent dispersive mode slightly below Q_x (shifted by space charge!)

including natural chromaticity ($Q'_x = -0.83Q_x$ and $Q'_y = -1.12Q_y$):
- broadens dispersive peak (here FFT undersamples sidebands)
- produces additional peaks, shifted dominant peak
Quad. Spectrum: + Finite Chromaticity

<table>
<thead>
<tr>
<th>bunched</th>
<th>transv. distr.</th>
<th>synchrotron motion</th>
<th>dispersion</th>
<th>chromaticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>KV (uniform)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

- experimental parameters (here $N = 4 \times 10^{11}$ ppb)
- evident quadrupolar betatron bands below $2Q_x, y$
- coherent dispersive mode slightly below Q_x (shifted by space charge!)

→ including natural chromaticity ($Q'_x = -0.83Q_x$ and $Q'_y = -1.12Q_y$):
 - broadens dispersive peak (here FFT undersamples sidebands)
 - produces additional peaks, shifted dominant peak

NB: simulations ran with 10×10^6 macro-particles on 150 longitudinal slices across the RF bucket (≈ 80 m) where space charge is solved on 128×128 grids (no significant transverse difference between 2.5D / 3D PIC)
Part II: Measurements – Mode Identification at CERN PS Injection
... and there is much to see!

The quadrupolar spectrum features many collective second-order modes:

\[S_{QPU} \propto U_{right} + U_{left} - U_{top} - U_{bottom} \]
\[\propto \langle x^2 \rangle - \langle y^2 \rangle \]

with \(x = \bar{x} + x_\beta + D_x \frac{\Delta p}{p_0} \) (likewise for \(y \)) this becomes

\[S_{QPU} \propto \left(\langle x_\beta^2 \rangle - \langle y_\beta^2 \rangle \right) + 2 \cdot \bar{x} \langle x_\beta \rangle + 2 \cdot \bar{y} \langle y_\beta \rangle \]
\[+ \langle x_\beta \frac{\Delta p}{p_0} \rangle - \langle y_\beta \frac{\Delta p}{p_0} \rangle + \text{longitudinal} \frac{\Delta p}{p_0} \text{ terms} \]

If linear coupling present, \(x, y \) rotate and additional \(\langle x \, y \rangle \) cross-terms appear.
Relevant for CERN PS

At CERN PS injection:

- $\bar{x}\langle x_\beta \rangle, \langle x_\beta \rangle^2$: dipolar horizontal motion
 $\Rightarrow Q_x, 2Q_x$ lines

- $\bar{y}\langle y_\beta \rangle, \langle y_\beta \rangle^2$: dipolar vertical motion
 $\Rightarrow Q_y, 2Q_y$ lines

FAIR GmbH | GSI GmbH
Adrian Oeftiger
25 Sep 2019
14/25
At CERN PS injection:

- $\bar{x}\langle x_\beta \rangle, \langle x_\beta \rangle^2$: dipolar horizontal motion
 $\implies Q_x, 2Q_x$ lines

- $\langle x_\beta \frac{\Delta p}{p_0} \rangle$: coherent horizontal dispersion mode
 $\implies Q_x \pm Q_s - \Delta Q_{SC}$ line

- $\bar{y}\langle y_\beta \rangle, \langle y_\beta \rangle^2$: dipolar vertical motion
 $\implies Q_y, 2Q_y$ lines

- $\langle y_\beta \frac{\Delta p}{p_0} \rangle$: coherent vertical dispersion mode
 $\implies Q_y \pm Q_s - \Delta Q_{SC}$ line

$\langle x y \rangle$: Chernin’s odd (tilting) modes
$\implies Q_x - Q_y$ and $Q_x + Q_y$ lines

in general, second-order modes affected by space charge!

1 in coupled case, betatron envelope modes rotate away from horizontal / vertical reference
Relevant for CERN PS

At CERN PS injection:

- $\bar{x}\langle x_\beta \rangle, \langle x_\beta \rangle^2$: dipolar horizontal motion
 $\Rightarrow Q_x, 2Q_x$ lines

- $\langle x_\beta \frac{\Delta p}{p_0} \rangle$: coherent horizontal dispersion mode
 $\Rightarrow Q_x \pm Q_s - \Delta Q_{SC}$ line
 $\Rightarrow 2Q_x - \Delta Q_{SC}$ line

- σ_x^2: horizontal envelope mode
 $\Rightarrow 2Q_x - \Delta Q_{SC}$ line

- $\bar{y}\langle y_\beta \rangle, \langle y_\beta \rangle^2$: dipolar vertical motion
 $\Rightarrow Q_y, 2Q_y$ lines

- $\langle y_\beta \frac{\Delta p}{p_0} \rangle$: coherent vertical dispersion mode
 $\Rightarrow Q_y \pm Q_s - \Delta Q_{SC}$ line

- σ_y^2: vertical envelope mode
 $\Rightarrow 2Q_y - \Delta Q_{SC}$ line

$\langle x y \rangle$: Chernin's odd (tilting) modes

1 in coupled case, betatron envelope modes rotate away from horizontal / vertical reference
Relevant for CERN PS

At CERN PS injection:

- $\langle x_{\beta} \rangle, \langle x_{\beta} \rangle^2$: dipolar horizontal motion
 $\Rightarrow Q_x, 2Q_x$ lines

- $\langle x_{\beta} \frac{\Delta p}{p_0} \rangle$: coherent horizontal dispersion mode
 $\Rightarrow Q_x \pm Q_s - \Delta Q_{SC}$ line

- σ_x^2: horizontal envelope mode
 $\Rightarrow 2Q_x - \Delta Q_{SC}$ line

- $\langle y_{\beta} \rangle, \langle y_{\beta} \rangle^2$: dipolar vertical motion
 $\Rightarrow Q_y, 2Q_y$ lines

- $\langle y_{\beta} \frac{\Delta p}{p_0} \rangle$: coherent vertical dispersion mode
 $\Rightarrow Q_y \pm Q_s - \Delta Q_{SC}$ line

- σ_y^2: vertical envelope mode
 $\Rightarrow 2Q_y - \Delta Q_{SC}$ line

- $\langle x y \rangle$: Chernin’s odd (tilting) modes
 $\Rightarrow Q_x - Q_y$ and $Q_x + Q_y$ lines

1 in coupled case, betatron envelope modes rotate away from horizontal / vertical reference
Relevant for CERN PS

At CERN PS injection:

- $\overline{x}\langle x_\beta \rangle, \langle x_\beta \rangle^2$: dipolar horizontal motion
 $\implies Q_x, 2Q_x$ lines
- $\langle x_\beta \frac{\Delta p}{p_0} \rangle$: coherent horizontal dispersion mode
 $\implies Q_x \pm Q_s - \Delta Q_{SC}$ line
- σ_x^2: horizontal envelope mode
 $\implies 2Q_x - \Delta Q_{SC}$ line
- $\overline{y}\langle y_\beta \rangle, \langle y_\beta \rangle^2$: dipolar vertical motion
 $\implies Q_y, 2Q_y$ lines
- $\langle y_\beta \frac{\Delta p}{p_0} \rangle$: coherent vertical dispersion mode
 $\implies Q_y \pm Q_s - \Delta Q_{SC}$ line
- σ_y^2: vertical envelope mode
 $\implies 2Q_y - \Delta Q_{SC}$ line
- $\langle x y \rangle$: Chernin’s odd (tilting) modes
 $\implies Q_x - Q_y$ and $Q_x + Q_y$ lines

\implies in general, second-order modes affected by space charge!

1 in coupled case, betatron envelope modes rotate away from horizontal / vertical reference
Dipolar Mismatch

Dipolar mismatch contributes to amplitude of dipolar modes \(\rightarrow Q_{x,y}, 2Q_{x,y} \)

set-up with \(Q_y \approx 6.05 \) and \(Q_x \approx 6.3 \), dipolar injection mismatch corrected:

(a) BPM measurements

(b) QPU spectogram
Dipolar Mismatch

Dipolar mismatch contributes to amplitude of dipolar modes $\implies Q_{x,y}, 2Q_{x,y}$

horizontal dipolar injection mis-steering:

$$\implies \text{dipolar mode } \langle x \rangle^2 \text{ mirrored at } 0.5: 2Q_x \text{ line at } 1 - 2 \times 0.3 = 0.4$$
Dipolar Mismatch

Dipolar mismatch contributes to amplitude of dipolar modes \(\Rightarrow Q_{x,y}, 2Q_{x,y} \)

vertical dipolar injection mis-steering:

(a) BPM measurements

(b) QPU spectogram
Odd Modes due to Linear Coupling

The beam features 2 odd (tilting) eigenmodes: 2nd order resonances due to linear coupling between the transverse planes (Chernin, Ref. [4, 5]).

1. low-frequency eigenmode: difference resonance $Q_x - Q_y$
2. high-frequency eigenmode: sum resonance $Q_x + Q_y$

→ driving terms for these originate from
 I. skew quadrupole component in optics
 II. space charge coupling in case of unequal beam sizes (e.g. $\epsilon_x \neq \epsilon_y$)
Odd Modes due to Linear Coupling

The beam features 2 odd (tilting) eigenmodes: 2nd order resonances due to linear coupling between the transverse planes (Chernin, Ref. [4, 5]).

1. low-frequency eigenmode: difference resonance $Q_x - Q_y$
2. high-frequency eigenmode: sum resonance $Q_x + Q_y$

Figure: skew quadrupoles in max. coupling
Odd Modes due to Linear Coupling

The beam features 2 odd (tilting) eigenmodes: 2nd order resonances due to linear coupling between the transverse planes (Chernin, Ref. [4, 5]).

1. low-frequency eigenmode: difference resonance $Q_x - Q_y$
2. high-frequency eigenmode: sum resonance $Q_x + Q_y$

Figure: skew quadrupoles in max. coupling
Dispersion Mode: Head-tail Motion!

- coherent dispersion mode: measure correlation $\langle x \frac{\Delta p}{p_0} \rangle$, $\langle y \frac{\Delta p}{p_0} \rangle$
- in PS at natural chroma, have (higher-order) horizontal instability
 \longrightarrow can be cured with transverse feedback
 \implies idea: identify dispersion mode, \sim space charge shift?

(a) quadrupolar spectrum

(b) wideband pick-up

Figure: without transverse feedback
Dispersion Mode: Head-tail Motion!

- coherent dispersion mode: measure correlation $\langle x \frac{\Delta p}{p_0} \rangle$, $\langle y \frac{\Delta p}{p_0} \rangle$
- in PS at natural chroma, have (higher-order) horizontal instability
 → can be cured with transverse feedback
 ⟷ idea: identify dispersion mode, ~→ space charge shift?

(a) quadrupolar spectrum
(b) wideband pick-up

Figure: with transverse feed-back switched on
Part III:
Missing Puzzle Piece...
the Even Envelope Modes $\sigma_{x,y}$
Betatron Mismatch from Transfer Line

At PS injection, SEM² grid measurements provide turn-by-turn data for transverse profiles (cf. CERN talk ↩), also quadrupolar pick-up data recorded.

(a) Operational optics: optimised injection

→ both operational and dispersion-optimised transfer line optics lead to minimal betatron mismatch in the PS (cf. pink curve)

⇒ typically the corresponding even envelope oscillation is minimal

²Secondary Electron EMission
Betatron Mismatch from Transfer Line

At PS injection, SEM² grid measurements provide turn-by-turn data for transverse profiles (cf. CERN talk ↗), also quadrupolar pick-up data recorded.

(b) Dispersion-optimised optics: optimised injection

→ both operational and dispersion-optimised transfer line optics lead to minimal betatron mismatch in the PS (cf. pink curve)

⇒ typically the corresponding even envelope oscillation is minimal

Secondary Electron Emission
Betatron Mismatch from Transfer Line

At PS injection, SEM2 grid measurements provide turn-by-turn data for transverse profiles (cf. CERN talk ↝), also quadrupolar pick-up data recorded.

(b) Dispersion-optimised optics: optimised injection

(c) Dispersion-optimised optics: betatron mismatch

→ both operational and dispersion-optimised transfer line optics lead to minimal betatron mismatch in the PS (cf. pink curve)

⇒ typically the corresponding even envelope oscillation is minimal

⇒ intentional betatron mismatch ↘ significant even envelope oscillation

2Secondary Electron Emission
QPU Spectrum for Betatron Mismatch

Looking at the quadrupolar pick-up for these 30 turns, we find a quickly damped even envelope oscillation (at $\approx 2Q_{x,y}$):

- With no betatron mismatch, the time signals show a smooth variation, and the frequency spectra are flat.
- With betatron mismatch, the time signals exhibit oscillations, and the frequency spectra show peaks, indicating the presence of the mismatch.

\rightarrow clearly visible betatron mismatch amplitude in the quadrupolar signal

\rightarrow frequency resolution at 30 turns is challenging

\Rightarrow at usual minimised betatron mismatch: small amplitudes in $f/f_{rev} \approx 0.45$ region (tunes are usual operational $Q_{x,y} \approx 0.23$)

\Rightarrow with intentional betatron mismatch: clearly observe energy in $f/f_{rev} \approx 0.45$ region

\Rightarrow usual injection observations won’t reveal even envelope modes, too well matched
Looking at the quadrupolar pick-up for these 30 turns, we find a quickly damped even envelope oscillation (at $\approx 2Q_{x,y}$):

- Clearly visible betatron mismatch amplitude in the quadrupolar signal
- Frequency resolution at 30 turns is challenging
- At usual minimised betatron mismatch: small amplitudes in $f/f_{rev} \approx 0.45$ region (tunes are usual operational $Q_{x,y} \approx 0.23$)
- With intentional betatron mismatch: clearly observe energy in $f/f_{rev} \approx 0.45$ region
- Usual injection observations won’t reveal even envelope modes, too well matched
Part IV: Quadrupolar Beam Transfer Function
Transverse Feedback as Quad. Kicker

So we cannot measure the even envelope modes at injection...

→ excite the beam in quadrupolar mode during the cycle!

⇒ quadrupolar beam transfer function

Kicker in section 97 is part of the PS transverse feedback system:

courtesy Guido Sterbini
Quadrupolar Excitation: Chirp

- distinct peaks around machine tunes $f < 0.25f_{rev}$
- frequency bands around twice the machine tunes
- (disregard the constant frequencies, due to instrumentation)
Measured Quadrupolar BTF

For more details on this approach, cf. Ref. [6] and slides at HB2018 contribution.

\Rightarrow I got intrigued by $\approx Q_x$ spectral content!
Dispersion Mode Revisited

- frequency analysis reveals regular sideband structure around dispersion mode (blue peaks), this measurement was for natural chroma

→ after LS2, new PS set-up: vanishing chroma + dipolar damping available!
Dispersion Mode Revisited

Simulations without chroma predict distinct narrow peak for dispersion mode
\(\sim \) measure SC shift much more accurately?

What happens if I excite higher-order head-tail modes?
\(\Longrightarrow \) energy in \(\left\langle x \frac{\Delta p}{p_0} \right\rangle \)? SC vs. instability?

- Frequency analysis reveals regular sideband structure around dispersion mode (blue peaks), this measurement was for natural chroma

\(\rightarrow \) after LS2, new PS set-up: vanishing chroma + dipolar damping available!
I hope, I could trigger some creative ideas... 🤔
Conclusion

Quadrupolar pick-ups

- provide non-invasive beam measurements
- can be “cheaply” recorded and long-term stored (standard operation?)

and they can provide rich information on the beam:

1. coherent dispersion mode: transverse-longitudinal correlation, e.g. due to
 - dispersion mismatch
 - head-tail instabilities

2. odd (tilting) envelope mode: linear coupling
 - this is the real amplitude of linear coupling in beam

3. even envelope mode: transverse beam size oscillation
 - transverse emittance
 - space charge tune shift

Important: all these modes are 2nd order \Rightarrow all frequencies change with space charge!
Conclusion

Quadrupolar pick-ups

- provide non-invasive beam measurements
- can be “cheaply” recorded and long-term stored (standard operation?)

and they can provide rich information on the beam:

1. **coherent dispersion mode**: transverse-longitudinal correlation, e.g. due to
 - dispersion mismatch
 - head-tail instabilities
Conclusion

Quadrupolar pick-ups

- provide non-invasive beam measurements
- can be “cheaply” recorded and long-term stored (standard operation?)

and they can provide rich information on the beam:

1. **coherent dispersion mode**: transverse-longitudinal correlation, e.g. due to
 - dispersion mismatch
 - head-tail instabilities

2. **odd (tilting) envelope mode**: linear coupling
 - this is the real amplitude of linear coupling in beam
Conclusion

Quadrupolar pick-ups

- provide non-invasive beam measurements
- can be “cheaply” recorded and long-term stored (standard operation?)

and they can provide rich information on the beam:

1. coherent dispersion mode: transverse-longitudinal correlation, e.g. due to
 - dispersion mismatch
 - head-tail instabilities

2. odd (tilting) envelope mode: linear coupling
 - this is the real amplitude of linear coupling in beam

3. even envelope mode: transverse beam size oscillation
 - transverse emittance
 - space charge tune shift

Important: all these modes are 2nd order \(\Rightarrow\) all frequencies change with space charge!
Conclusion

Quadrupolar pick-ups

- provide non-invasive beam measurements
- can be “cheaply” recorded and long-term stored (standard operation?)

and they can provide rich information on the beam:

1. **coherent dispersion mode**: transverse-longitudinal correlation, e.g. due to
 - dispersion mismatch
 - head-tail instabilities

2. **odd (tilting) envelope mode**: linear coupling
 - this is the real amplitude of linear coupling in beam

3. **even envelope mode**: transverse beam size oscillation
 - transverse emittance
 - space charge tune shift

Important: all these modes are 2nd order \(\Rightarrow\) all frequencies change with space charge!
Outlook: Control Room App Development

A first prototype of a control room app (CERN CC):

https://gitlab.cern.ch/mcoly/ps_qpu
Thank you for your attention!

Acknowledgements:
Simon Albright, Marcel Coly, Heiko Damerau, Vincenzo Forte, Marek Gasior, Tom Levens, Elias Métral, Haroon Rafique, Guido Sterbini, Malte Titze, Panagiotis Zisopoulos

Some Historical Perspective

QPU in **time domain** for emittance measurements:
- 1983, R. H. Miller et al. at SLAC [7]

QPU in **frequency domain** for emittance measurements:

QPU in **frequency domain** for space charge measurements:
- 1996, M. Chanel at CERN in LEAR [9]
- 1999, T. Uesugi et al. at NIRS in HIMAC [10]
- 2014, R. Sing et al. at GSI in SIS-18 [12]

⇒ all far away from coupling and coasting beams

⇒ What about bunched beams? Close to coupling?
Incoherent KV Tune Shift

The Kapchinskij-Vladimirskij (KV) beam distribution has all particles at same incoherent space charge tune shift:

\[
\Delta Q_{x,y}^{KV} = -\frac{K^{SC} R^2}{4\sigma_{x,y}(\sigma_x + \sigma_y)Q_{x,y}} \quad (1a)
\]

\[
\Delta Q_{x,y}^{KV} = 1 + \frac{\sigma_{x,y}}{\sigma_{y,x}} \Lambda \quad (1b)
\]

space charge perveance \(K^{SC} \) is given by

\[
K^{SC} = \frac{q\lambda}{2\pi\epsilon_0 \beta \gamma^2 p_0 c}
\]
Incoherent KV Tune Shift

The Kapchinskij-Vladimirskij (KV) beam distribution has all particles at same incoherent space charge tune shift:

\[\Delta Q_{x,y}^{KV} = -\frac{K_{SC} R^2}{4\sigma_{x,y}(\sigma_x + \sigma_y)Q_{x,y}} \]

\[= 1 + \frac{\sigma_{x,y}/\sigma_{y,x}}{2Q_{x,y}} \Lambda \] \hspace{1cm} (1a)

\[\Lambda = \frac{Q_+^2 + Q_-^2 - 4(Q_x^2 + Q_y^2)}{4 + 3(\sigma_x/\sigma_y + \sigma_y/\sigma_x)} \] \hspace{1cm} (2)

(Gaussian tune spread = 2x the RMS-equivalent KV tune shift!)

space charge perveance \(K^{SC} \) = \(\frac{q\lambda}{2\pi\varepsilon_0 \beta \gamma^2 \rho_0 c} \)
Envelope Equations

Envelope equations of motion (e.o.m.)

\[
\begin{align*}
\sigma''_x + K_x(s) \sigma_x - \frac{\epsilon^2_{x,\text{geo}}}{\sigma^3_x} - \frac{K^{\text{SC}}}{2(\sigma_x + \sigma_y)} &= 0 , \\
\sigma''_y + K_y(s) \sigma_y - \frac{\epsilon^2_{y,\text{geo}}}{\sigma^3_y} - \frac{K^{\text{SC}}}{2(\sigma_x + \sigma_y)} &= 0
\end{align*}
\] (3a)

for transverse r.m.s. beam widths \(\sigma_{x,y}\) have equilibrium

\[
\begin{align*}
\frac{Q^2_x}{R^2} \sigma_{x,m} - \frac{\epsilon^2_{x,\text{geo}}}{\sigma^3_{x,m}} - \frac{K^{\text{SC}}}{2(\sigma_{x,m} + \sigma_{y,m})} &= 0 , \\
\frac{Q^2_y}{R^2} \sigma_{y,m} - \frac{\epsilon^2_{y,\text{geo}}}{\sigma^3_{y,m}} - \frac{K^{\text{SC}}}{2(\sigma_{x,m} + \sigma_{y,m})} &= 0
\end{align*}
\] (4a)
Smooth Approximation, Lin. Perturbation

Constant focusing channel

\[K_{x,y} = \frac{1}{\beta_{x,y}^2} = \frac{Q_{x,y}^2}{R^2} = \text{const.} \]

(5)

gives linearised e.o.m. for perturbation around equilibrium \(r = \sigma_m + \delta r \)

\[\frac{d^2}{ds^2} \begin{pmatrix} \delta r_x \\ \delta r_y \end{pmatrix} = - \begin{pmatrix} \kappa_x & \kappa_{SC} \\ \kappa_{SC} & \kappa_y \end{pmatrix} \cdot \begin{pmatrix} \delta r_x \\ \delta r_y \end{pmatrix} \]

(6)

with

\[\begin{cases}
\kappa_{x,y} = 4 \frac{Q_{x,y}^2}{R^2} - \frac{2\sigma_{x,y} + 3\sigma_{y,x}}{\sigma_{x,y}} \kappa_{SC} \\
\kappa_{SC} = \frac{K_{SC}}{2(\sigma_x + \sigma_y)^2}
\end{cases} \]

(7)
Adding dispersion to envelope equations, studied by Venturini-Reiser [13] and, independently, by Lee-Okamoto [14]:

\[
\sigma''_x + \left(K_x(s) - \frac{K^{SC}}{2r_x(r_x + \sigma_y)}\right) \sigma_x - \frac{\epsilon_{x,geo}^2}{\sigma_x^3} = 0,
\]

\[
(8a)
\]

\[
\sigma''_y + \left(K_y(s) - \frac{K^{SC}}{2\sigma_y(r_x + \sigma_y)}\right) \sigma_y - \frac{\epsilon_{y,geo}^2}{\sigma_y^3} = 0
\]

\[
(8b)
\]

\[
D''_x + \left(K_x(s) - \frac{K^{SC}}{2r_x(r_x + \sigma_y)}\right) D_x = \frac{1}{\rho(s)}
\]

\[
(8c)
\]

Generalised \(r_x^2 = \sigma_x^2 + D_x^2 \frac{\Delta p}{p_0} \) and \(\epsilon_{x,geo} \) only betatron emittance (no dispersive contribution). Linearisation around matched values gives a 3D matrix to be solved for eigenvalues \(\mapsto \) mode tunes of the betatron envelopes \(Q_\pm \) as well as the dispersion mode \(Q_d \), cf. e.g. Ref. [15].
Far Away vs. On the Coupling Resonance

Two eigenmodes for coherent quadrupolar betatron oscillation:

far away from coupling

- (a) horizontal mode
- (b) vertical mode

Quadrupolar mode tunes:

\[
Q_{\pm} = 2Q_{x,y} - \left| \Delta Q_{x,y}^{K\nu} \right| \left(3 - \frac{\sigma_{x,y}}{\sigma_x + \sigma_y} \right) / 2 \quad (9)
\]

full coupling

- (a) breathing mode
- (b) antisym. mode

Quadrupolar mode tunes:

\[
Q_+ = 2Q_0 - \left| \Delta Q_{x,y}^{K\nu} \right| \\
Q_- = 2Q_0 - \frac{3}{2} \left| \Delta Q_{x,y}^{K\nu} \right| \quad (10a)
\]

(assuming round beams, \(Q_{x,y} \equiv Q_0 \))
According to Aslaninejad and Hofmann [16], not possible to infer space charge from odd modes.

"For weak space charge (as in rings) this coherent shift [of the linear coupling modes] is found to be approximately independent of the space-charge tune shift as well as the absolute tune values."

Figure: coherent shift in SC incoherent tune shift units vs. emittance ratio
Vanishing Chroma, Mode 0

(a) Mode 0 in horizontal plane

(b) QPU spectogram

(c) QPU spectrum after injection bump (480 turns)

transverse feedback off at vanishing chromaticity \rightleftharpoons horizontal rigid head-tail mode
Vanishing Chroma, Stabilised

(a) Mode 0 in horizontal plane

(b) QPU spectogram

transverse feedback on at vanishing chromaticity \Longrightarrow stabilised, shifted peak by about 0.006 $\sim\sim$ coherent dispersion mode?

(c) QPU spectrum after injection bump (480 turns)