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● Under resonant conditions 
coherent beam-beam modes 
may be driven unstable

– Higher orders as well as 
synchrobetatron resonances 
can also lead to such 
instabilities                          
e.g. A. Chao, SSCL-346, 1991



26 Sept. 2019 MCBI 2019 - Zermatt, Switzerland 9

Coherent beam-beam modes

( x i

x i ')t+1

=M lattice⋅M BB( x i

x i ' )t
Q

π
 = n/2

Q
σ

 = n/2
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coherent beam-beam modes 
may be driven unstable

– Higher orders as well as 
synchrobetatron resonances 
can also lead to such 
instabilities                          
e.g. A. Chao, SSCL-346, 1991

● The choice of a favourable 
working point usually matches 
the constraints also imposed by 
single particle stability
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Coherent beam-beam mode : Asymmetric machines

● At the design stage of B factories, colliders with asymmetric ring 
circumferences were considered

SuperB asymmetric ring layout
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Coherent beam-beam mode : Asymmetric machines

● At the design stage of B factories, colliders with asymmetric ring 
circumferences were considered

– The tunes and the super-period are constrained by resonant conditions 
for the coherent beam-beam modes                                                         
K. Hirata and E. Keil, Phy. Lett. B 232 3 (1989) / M. Zobov and Y. Zhang, IPAC’11

Instabili ty grow
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Coherent beam-beam mode : Asymmetric machines
● New 8-shape designs of electron-ion colliders features both asymmetric 

revolution frequencies and IP locations (→ JLEIC, EicC)

EicC-I layout* :

*
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● The results obtained semi-analytically are in 
agreement with the guidelines of Hirata and 
Keil :

– Short super-periods offer a large stable 
space in the terms of tunes and beam-
beam tune shift

– Long super-periods lead to weak 
instabilities even with low beam-beam 
tune shifts
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Mode coupling instability of colliding beams
● The interaction of coherent beam-beam mode with the machine impedance can 

result in strong mode coupling instabilities S. White, et al., Phys. Rev. ST Accel. Beams 17 041002 (2014)

– This instability is not driven by a resonant condition, it can therefore not be fully 
mitigated with choices of tunes

– In some cases, the layout of IPs and phase advance between them can be 
used to control the beam-beam mode frequencies

→ Act on intrinsic Landau damping                                                                
Y. Alexahin, Nucl. Instrum. Methods Phys. Res. A 480, 253 (2002) 
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Mode coupling instability of colliding beams

● The complexity of the layout of beam-beam 
interactions in the LHC prevents effective 
mitigation with phase advances

– The transverse feedback is effective against 
this instability

ADT onADT off
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Mode coupling instability at the HL-LHC

● In the presence of large Piwinski 
angle or hourglass effect, we may 
expect mode coupling of higher order 
head-tail mode which are not 
efficiently damped by a feedback 
based on the bunch centroidLow order mode 

coupling
High order mode 
coupling

W/o damper
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Mode coupling instability at the HL-LHC
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Mode coupling instability at the HL-LHC

● In the presence of large Piwinski 
angle or hourglass effect, we may 
expect mode coupling of higher order 
head-tail mode which are not 
efficiently damped by a feedback 
based on the bunch centroid

● Landau damping by synchrotron 
side-bands (enabled by the large 
Piwinski angle or hourglass effect) 
is sufficient to ensure stability for 
beam-beam parameter larger than 
Qs in the HL-LHC                                                 

L. Barraud, et al., CERN-ACC-NOTE-2019-0032 

Linearised model
(BimBim)

Tracking including 6D 
non-linear BB force
(COMBI)

High order mode 
coupling

Low order mode 
coupling

G = 0.02
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Las Ketchup instability

● In the presence of a crossing angle or hourglass effect, beam-beam 
interaction leads to an energy change

→ Longitudinal coherent beam-beam modes
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H. Timko, Evian 2016
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Las Ketchup instability

● In the presence of a crossing angle or hourglass effect, beam-beam 
interaction leads to an energy change

→ Longitudinal coherent beam-beam modes

● Some signals are correlated in the 
two beams

→ Potential candidate for 
coherent longitudinal beam-
beam mode, but not studied 
thoroughly

● In the first part of 
2016, loss of Landau 
damping in the 
longitudinal plane 
was observed due to 
radiation damping   
H. Timko, Evian 2016
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Landau damping of head-tail modes

● Even when coherent beam-beam modes are stable, the non-linearity of the beam-
beam interactions affect the single particle motion
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Landau damping of head-tail modes

● Even when coherent beam-beam modes are stable, the non-linearity of the beam-
beam interactions affect the single particle motion

→ The modification of the amplitude detuning affects Landau damping of 
single-beam head-tail modes
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Landau damping of head-tail modes

● Even when coherent beam-beam modes are stable, the non-linearity of the beam-
beam interactions affect the single particle motion

→ The modification of the amplitude detuning affects Landau damping of 
single-beam head-tail modes

● The stability diagram can be obtained by numerical integration of the dispersion 
integral based on tracking data → PySSD X. Buffat, et al., Phys. Rev. ST Accel. Beams 17, 111002 (2014) 
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Landau damping of head-tail modes

● The coherent stability factor indicates the criticality of Landau damping

– Used to compare relatively the beam stability in complex configurations and 
complex processes (e.g. bringing the beams into collision)
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Landau damping of head-tail modes

● The coherent stability factor indicates the criticality of Landau damping

– Used to compare relatively the beam stability in complex configurations and 
complex processes (e.g. bringing the beams into collision)

Long-range
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Landau damping of head-tail modes

● The coherent stability factor indicates the criticality of Landau damping

– Used to compare relatively the beam stability in complex configurations and 
complex processes (e.g. bringing the beams into collision)

at large offset
Local minimum of Landau damping 
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Landau damping of head-tail modes

● The coherent stability factor indicates the criticality of Landau damping

– Used to compare relatively the beam stability in complex configurations and 
complex processes (e.g. bringing the beams into collision)

at large offset
Local minimum of Landau damping 

at small offset
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Offset collisions
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Offset collisions
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Offset collisions

● The operation of the crab cavities with offset beams affects the beam stability as 
well as the interplay with the amplitude detuning driven by the octupoles

● So does:

– The β*

– The crossing / crab angle

– The plane and synchronisation of the separation bumps in the different IPs
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The Shakiri effect



26 Sept. 2019 MCBI 2019 - Zermatt, Switzerland 49

The Shakiri effect
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The Shakiri effect
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The Shakiri effect

● Xherdan Shakiri was misunderstood: he was trying to tell us about a mitigation 
strategy for the loss of Landau damping with offset beams
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Observations

● First observations in 2012, due to offset levelling in IP8

● Dedicated experiment in 2018, demonstrating mitigation by fast crossing of the 
unstable condition S. Fartoukh, et al., CERN-NOTE-2019, in prep. 

→ This mitigation is not suitable for luminosity levelling
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Observations

● First observations in 2012, due to offset levelling in IP8

● Dedicated experiment in 2018, demonstrating mitigation by fast crossing of the 
unstable condition S. Fartoukh, et al., CERN-NOTE-2019, in prep. 

→ This mitigation is not suitable for luminosity levelling

Fast crossing of transient 
unstable configuration

Instability when steady at 
1.6σ full separation 
between the beams
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Head-on interaction

● By generating a large amplitude detuning for the 
core of the beam distribution, head-on 
interaction is very efficient at providing Landau 
damping
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Head-on interaction

● By generating a large amplitude detuning for the 
core of the beam distribution, head-on 
interaction is very efficient at providing Landau 
damping
– Only overcome by electron cloud 

instabilities in the LHC                                   
A. Romano, et al., Phys. Rev. Accel. Beams 21, 061002 (2018)
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– Colliding as early in the cycle was 
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2012, baseline for HL-LHC and FCC-hh (β* 
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Head-on interaction

● By generating a large amplitude detuning for the 
core of the beam distribution, head-on 
interaction is very efficient at providing Landau 
damping
– Only overcome by electron cloud 

instabilities in the LHC                                   
A. Romano, et al., Phys. Rev. Accel. Beams 21, 061002 (2018)

– Colliding as early in the cycle was 
considered as a backup in the LHC since 
2012, baseline for HL-LHC and FCC-hh (β* 
levelling)

– An e-lens mimicking this behaviour would 
have a similar potential as a MCBI                
V. Shiltsev, el al., Phys. Rev. Lett. 119, 134802 (2017)
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Linear coupling due to beam-beam interactions

● Long-range beam-beam interactions on a skew 
plane generate coupling and therefore can 
reduce Landau damping

● Missing long-range interaction (PACMAN effect) 
makes this contribution uncorrectable for all 
bunches A. Ribes Metidieri, et al., CERN-ACC-NOTE-2019-0037 

● The control of the orbit in the IR becomes critical 
for the beam stability

Xing

// sep

J. Wenninger, et al., CERN-ACC-NOTE-2018-0026
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Summary

● The mitigation of coherent beam-beam instabilities starts with the rings' layout 
mostly for asymmetric periodic colliders

● The interaction of coherent beam-beam modes with the machine impedance 
can lead to mode coupling instabilities

– Depending on the impedance and the interaction type (long-range, head-
on, crossing angle, crab angle, β*/σs) a transverse feedback may 
constitute an effective mitigation

– Intrinsic Landau damping from the non-linearity of the interaction may be 
controlled through phase advances between IP(s) in each beam

● The impact of beam-beam interactions on amplitude detuning can be

– Beneficial for Landau damping mainly thanks to the strong impact of head-
on beam-beam interaction on the core of the beam distributions

– Detrimental for Landau damping mainly by compensating other sources of 
tune spread

● The mitigation of the loss of Landau damping with offset beams require 
a detail understanding of the impact of the non-linearities on the tune 
spread and the stability diagram (crossing / crab angle, β*, ε, σs)
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