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» Coherent beam-beam modes

- Coherent resonance : The issue with asymmetric machines

- The mode coupling instability of colliding beams

- Longitudinal beam-beam mode : The Las Ketchup instability
 Amplitude detuning and Landau damping

- Long-range

- Offset and crossing angle : The Shakiri effect

- Head-on interaction
« PACMAN linear coupling
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Coherent beam-beam mode
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Coherent beam-beam mode
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Coherent beam-beam mode
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Coherent beam-beam modes
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Coherent beam-beam modes
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Coherent beam-beam modes
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Under resonant conditions
coherent beam-beam modes
may be driven unstable

- Higher orders as well as
synchrobetatron resonances
can also lead to such

instabilities
e.g. A. Chao, SSCL-346, 1991
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Coherent beam-beam modes

Under resonant conditions
coherent beam-beam modes
may be driven unstable

- Higher orders as well as
synchrobetatron resonances
can also lead to such

instabilities
e.g. A. Chao, SSCL-346, 1991

The choice of a favourable

working point usually matches

0-8_0 02 04 06 0S8 the constraints also imposed by
Qo single particle stability
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Coherent beam-beam mode : Asymmetric machines

» At the design stage of B factories, colliders with asymmetric ring
circumferences were considered

NS

SuperB asymmetric ring layout
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Coherent beam-beam mode : Asymmetric machines

» At the design stage of B factories, colliders with asymmetric ring
circumferences were considered

- The tunes and the super-period are constrained by resonant conditions

for the coherent beam-beam modes
K. Hirata and E. Keil, Phy. Lett. B 232 3 (1989) | M. Zobov and Y. Zhang, IPAC’11
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Coherent beam-beam mode : Asymmetric machines

* New 8-shape designs of electron-ion colliders features both asymmetric
revolution frequencies and IP locations (— JLEIC, EicC)

EicC-I layout* :

* M MERSRIR MRS

Institute of Modern Physics, Chinese Academy of Sciences
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Coherent beam-beam mode : Asymmetric machines

* New 8-shape designs of electron-ion colliders features both asymmetric
revolution frequencies and IP locations (— JLEIC, EicC)

EicC-I layout* : Model in the BimBim code:

Protons’sequence ,
Electrons’sequence

* o DERSRECIEEHE

V’\J Institute of Modern Physics, Chinese Academy of Sciences
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Coherent beam-beam mode : Asymmetric machines

New 8-shape designs of electron-ion colliders features both asymmetric
revolution frequencies and IP locations (— JLEIC, EicC)

EicC-I layout* : Model in the BimBim code:

Protons’sequence ,
Electrons’sequence

Ratio of revolution
frequencies

* The results obtained semi-analytically are in
agreement with the guidelines of Hirata and
Keil :

- Short super-periods offer a large stable
space in the terms of tunes and beam-
beam tune shift

- Long super-periods lead to weak B B S
instabilities even with low beam-beam . o
tune shifts cnp> DERS BRI T 0 IR EH 7 PR

&/ \ Institute of Modern Physics, Chinese Academy of Sciences
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Mode coupling instability of colliding beams

 The interaction of coherent beam-beam mode with the machine impedance can
result in strong mode coupling instabilities s. wite, et al., Phys. Rev. ST Accel. Beams 17 041002 (2014)

- This instability is not driven by a resonant condition, it can therefore not be fully
mitigated with choices of tunes

- In some cases, the layout of IPs and phase advance between them can be
used to control the beam-beam mode frequencies

— Act on intrinsic Landau damping
Y. Alexahin, Nucl. Instrum. Methods Phys. Res. A 480, 253 (2002)
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Mode coupling instability of colliding beams

 The interaction of coherent beam-beam mode with the machine impedance can
result in strong mode coupling instabilities s. wite, et al., Phys. Rev. ST Accel. Beams 17 041002 (2014)

- This instability is not driven by a resonant condition, it can therefore not be fully
mitigated with choices of tunes

- In some cases, the layout of IPs and phase advance between them can be
used to control the beam-beam mode frequencies

— Act on intrinsic Landau damping
Y. Alexahin, Nucl. Instrum. Methods Phys. Res. A 480, 253 (2002)
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Mode coupling instability of colliding beams

The interaction of coherent beam-beam mode with the machine impedance can
result in strong mode coupling instabilities s. wite, et al., Phys. Rev. ST Accel. Beams 17 041002 (2014)

- This instability is not driven by a resonant condition, it can therefore not be fully
mitigated with choices of tunes

- In some cases, the layout of IPs and phase advance between them can be
used to control the beam-beam mode frequencies

— Act on intrinsic Landau damping
Y. Alexahin, Nucl. Instrum. Methods Phys. Res. A 480, 253 (2002)

Expected coherent
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Landau damping
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Mode coupling instability of colliding beams
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The complexity of the layout of beam-beam
interactions in the LHC prevents effective
mitigation with phase advances

- The transverse feedback is effective against
this instability
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Mode coupling instability of colliding beams
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 The complexity of the layout of beam-beam
interactions in the LHC prevents effective
mitigation with phase advances

- The transverse feedback is effective against
this instability

— Lattice non-linearities (here octupoles) can
provide Landau damping, but quite inefficiently
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Mode coupling instability of colliding beams
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Mode coupling instability of colliding beams
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Mode coupling instability at the HL-LHC
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In the presence of large Piwinski
angle or hourglass effect, we may
expect mode coupling of higher order
head-tail mode which are not
efficiently damped by a feedback
based on the bunch centroid
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Mode coupling instability at the HL-LHC
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Re(Q)

Mode coupling instability at the HL-LHC
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Mode coupling instability at the HL-LHC

0.310F — « |n the presence of large Piwinski
Sgégé = angle or hourglass _effect, we may
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0.285} - head-tail mode which are not
0.260t: efficiently damped by a feedback
53 ~ Eowoerdermode  High order mode based on the bunch centroid
o :eetrp}'rﬁg : #couphng
£0.4
0.2 ; ; ; ; ; Tracking including 6D Linearised model
Y0005 10 15 20 25 30 non-linear BB force (BimBim)
3 x 1072 (COMBI)
x10~* : ‘
. Landau damping by synchrotron 3 !
side-bands (enabled by the large =
Piwinski angle or hourglass effect) &
is sufficient to ensure stability for C
beam-beam parameter larger than §
Q, in the HL-LHC o
L. Barraud, et al., CERN-ACC-NOTE-2019-0032 ©
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Las Ketchup instability

* In the presence of a crossing angle or hourglass effect, beam-beam
interaction leads to an energy change

— Longitudinal coherent beam-beam modes

Bunch length B2 [ns]

o
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Time [min since 2016-06-26 12:33:05.914000] 0 500 1000 1500 ~ 2000 2500 3000
Time [min since 2016-06-26 12:33:05.914000]

26 Sept. 2019 MCBI 2019 - Zermatt, Switzerland



Las Ketchup instability

* In the presence of a crossing angle or hourglass effect, beam-beam
interaction leads to an energy change

— Longitudinal coherent beam-beam modes

e In the first part of
2016, loss of Landau
damping in the
longitudinal plane
was observed due to

radiation damping
H. Timko, Evian 2016
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Las Ketchup instability

* In the presence of a crossing angle or hourglass effect, beam-beam
interaction leads to an energy change

— Longitudinal coherent beam-beam modes

e In the first part of
2016, loss of Landau
damping in the
longitudinal plane
was observed due to

radiation damping
H. Timko, Evian 2016
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 Some signals are correlated in the
two beams
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Landau damping of head-tail modes
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Even when coherent beam-beam modes are stable, the non-linearity of the beam-




Landau damping of head-tail modes
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Landau damping of head-tail modes
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Landau damping of head-tail modes
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Landau damping of head-tail modes

0.02} -

0.00

H H H H LS H H
. . . . £ H .

- - Beam-beam force
—0.04|| == Head-on e N

1 1 1 1 I I I
-20 =15 =10 =5 0 5 10 15 20

Q

 Even when coherent beam-beam modes are stable, the non-linearity of the beam-
beam interactions affect the single particle motion

— The modification of the amplitude detuning affects Landau damping of
single-beam head-tail modes
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Landau damping of head-tail modes
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 Even when coherent beam-beam modes are stable, the non-linearity of the beam-
beam interactions affect the single particle motion

— The modification of the amplitude detuning affects Landau damping of
single-beam head-tail modes

« The stability diagram can be obtained by numerical integration of the dispersion
integral based on tracking data — PySSD x suffat, et al., Phys. Rev. ST Accel. Beams 17, 111002 (2014)
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Landau damping of head-tail modes

* The coherent stability factor indicates the criticality of Landau damping

- Used to compare relatively the beam stability in complex configurations and
complex processes (e.g. bringing the beams into collision)
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Landau damping of head-tail modes
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* The coherent stability factor indicates the criticality of Landau damping

- Used to compare relatively the beam stability in complex configurations and
complex processes (e.g. bringing the beams into collision)
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Landau damping of head-tail modes

| ole—4 2.0
S
0 8 ......................................... f ............................................................ § 1 5
~ z
o 06 ...................................... BRI 'R, || S — 1 S— =
0
3 S 1.0
0.2 Long range %_?5
<
—1.0 —-0.5 0.5 1.0 0.0
Re(AQ) le-3 220 15 10 5 0

Full separation [o]

* The coherent stability factor indicates the criticality of Landau damping

- Used to compare relatively the beam stability in complex configurations and
complex processes (e.g. bringing the beams into collision)
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Landau damping of head-tail modes
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* The coherent stability factor indicates the criticality of Landau damping

- Used to compare relatively the beam stability in complex configurations and
complex processes (e.g. bringing the beams into collision)
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Landau damping of head-tail modes
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* The coherent stability factor indicates the criticality of Landau damping

- Used to compare relatively the beam stability in complex configurations and
complex processes (e.g. bringing the beams into collision)
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Offset collisions
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Offset collisions
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Offset collisions
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Offset collisions
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Offset collisions
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The operation of the crab cavities with offset beams affects the beam stability as
well as the interplay with the amplitude detuning driven by the octupoles

So does:
- The B*
- The crossing / crab angle

- The plane and synchronisation of the separation bumps in the different IPs
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The Shakiri effect
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The Shakiri effect
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The Shakiri effect
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The Shakiri effect
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The Shakiri effect
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« Xherdan Shakiri was misunderstood: he was trying to tell us about a mitigation
strategy for the loss of Landau damping with offset beams
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» First observations in 2012, due to offset levelling in IP8

« Dedicated experiment in 2018, demonstrating mitigation by fast crossing of the
unstable condition s. Fartoukh, et al., CERN-NOTE-2019, in prep.

— This mitigation is not suitable for luminosity levelling
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» First observations in 2012, due to offset levelling in IP8

« Dedicated experiment in 2018, demonstrating mitigation by fast crossing of the
unstable condition s. Fartoukh, et al., CERN-NOTE-2019, in prep.

— This mitigation is not suitable for luminosity levelling
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» First observations in 2012, due to offset levelling in IP8

« Dedicated experiment in 2018, demonstrating mitigation by fast crossing of the
unstable condition s. Fartoukh, et al., CERN-NOTE-2019, in prep.

— This mitigation is not suitable for luminosity levelling
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» First observations in 2012, due to offset levelling in IP8

« Dedicated experiment in 2018, demonstrating mitigation by fast crossing of the
unstable condition s. Fartoukh, et al., CERN-NOTE-2019, in prep.

— This mitigation is not suitable for luminosity levelling
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Head-on interaction
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* By generating a large amplitude detuning for the
core of the beam distribution, head-on
interaction is very efficient at providing Landau
damping
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Head-on interaction

—4
0.324 o 10—
8,
0.322 |
0.320] 6
. 35
30.318| =N
0.316} —  Head-on ~ 3
7 — Long-range | | 2t
0.314 —  Octupole 1t
031270304 0307 0310 0313 23

Ox

* By generating a large amplitude detuning for the
core of the beam distribution, head-on

interaction is very efficient at providing Landau 3.0F H“
- Only overcome by electron cloud Co e =
instabilities in the LHC El B ; SR
A. Romano, et al., Phys. Rev. Accel. Beams 21, 061002 (2018) () L.5¢ = = = -
- Colliding as early in the cycle was E 1.0¢ = = =
considered as a backup in the LHC since 0.5 = =%
2012, baseline for HL-LHC and FCC-hh (* =e= =1 ======
levelling) ‘ ‘ ‘ ——
0.315  0.320 0.325  0.330

Spectrum

26 Sept. 2019 MCBI 2019 - Zermatt, Switzerland
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— An e-lens mimicking this behaviour would Spectrum

have a similar potential as a MCBI
V. Shiltsev, el al., Phys. Rev. Lett. 119, 134802 (2017)
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Linear coupling due to beam-beam interactions
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* The mitigation of coherent beam-beam instabilities starts with the rings' layout
mostly for asymmetric periodic colliders

* The interaction of coherent beam-beam modes with the machine impedance
can lead to mode coupling instabilities

- Depending on the impedance and the interaction type (long-range, head-
on, crossing angle, crab angle, */o,) a transverse feedback may

constitute an effective mitigation

- Intrinsic Landau damping from the non-linearity of the interaction may be
controlled through phase advances between IP(s) in each beam

* The impact of beam-beam interactions on amplitude detuning can be

- Beneficial for Landau damping mainly thanks to the strong impact of head-
on beam-beam interaction on the core of the beam distributions

- Detrimental for Landau damping mainly by compensating other sources of
tune spread

» The mitigation of the loss of Landau damping with offset beams require
a detail understanding of the impact of the non-linearities on the tune
spread and the stability diagram (crossing / crab angle, 3%, €, 0,)
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