MCBI in an Electron Ion Collider

Rui Li Jefferson Lab

MCBI 2019 Zermatt, Switzerland September 23-27, 2019

- Many thanks to Mike Blaskiewicz for providing material on ion effect studies and for helpful discussions
- Many thanks to JLAB colleagues: F. Marhauser, T. Makauski, J. Guo, K. Deitrick, H. Park, S. Sosa

Outline

- 1. Introduction
- 2. Collective Instabilities in JLEIC and eRHIC
- 3. MCBI in an EIC
- 4. Summary

1. Introduction

An electron-ion collider (EIC) is identified as the next exploring machine for probing the QCD structure and the dynamics of nuclear matter

- high center-of-mass energy (30~140 GeV),
- high luminosity $(10^{33} \sim 10^{34} \text{ cm}^{-2} \text{s}^{-1})$
- wide range of ion species
- high polarization (~70% for the electron and light ion beams)

eRHIC

- ion ring: modified RHIC (E_p=41-275 GeV)
- e-ring (E_e= 5-18 GeV)

Rapid recycling synchrotron (E_{ini}=400MeV)

- figure-8 ion ring (E_p=30-200 GeV)
- figure-8 e-ring (E_e= 3-12 GeV)
- 12 GeV CEBAF as full-energy e-ring injector

Luminosity concepts: adopt concepts in lepton colliders

Special Regime of JLEIC Parameters

JLEIC:
$$n_b = 3360, s_b = 2 \text{ ns}, \sigma_z = 1 \text{ cm}, \beta_y^* = 1 \text{ cm}, \theta = 50 \text{ mrad}$$

e-Ring

Beam parameters are similar to those in a lepton collider Optics should be feasible for $E_e = 3 \sim 12 \text{ GeV}$ Moderate bunch charge: $N_e = 3.7 \times 10^{10}/\text{b}$, $I_{ave} = 1 \sim 3 \text{ A}$ How to choose optics so it gives the energy spread that is sufficient for Landau damping of LSBI?

• Ion Ring

Beam parameters are similar to those in a lepton collider collision while under strong electron cooling $(\varepsilon_{nx}/\varepsilon_{ny} = 0.5/0.1 \,\mu\text{m})$ High rep rate (476MHz), short bunch length (1 cm), $Q_s = 0.05$ Moderate bunch charge: $N_p = (1 \sim 4) \times 10^{10} / \text{b}$, $I_{ave} = 0.75 \text{ A}$ With strong coupled-bunch effect, does large Q_s affect the longitudinal damper? Could noise of damper in the collider ring cause emittance growth? What's the role of synchro-betatron coupling in hour-glass effect in damper design?

Strong Bunched Electron Cooling at High Energy

JLEIC

eRHIC

- Magnetized electron beam (E=20-55 MeV)
- ERL for minimizing power consumption (I_{ave}=138 mA, 476.3 MHz)
- Circulator cooler ring (11 turns, 3.2nC/b)

- Coherent electron cooling
- Options for amplifier

2. Collective Effects in an EIC

Electr	on Ring Ion Rings	Electron Cooler
Incoherent:Coherent:	Laslett tune shift, emittance growth Single-bunch Instability Coupled-bunch Instability	Space chargeCSRBBU
• Scattering:	IBS Touschek scattering Residual gas scattering	ScatteringTwo stream effects
Heat loadFeedback		
• Two-stream Ion eff		

JLEIC Baseline *e-p* Parameters

CM energy	GeV	2 ⁷ (lc	1.9 ow)	44 (mec	l.7 lium)	63 (hi	8.3 gh)
		р	е	р	е	р	е
Beam energy	GeV	40	3	100	5	100	10
Collision frequency	MHz	4	76	47	76	476/4=119	
Particles per bunch	10 ¹⁰	0.98	3.7	0.98	3.7	3.9	3.7
Beam current	А	0.75	2.8	0.75	2.8	0.75	0.71
Polarization	%	80	80	80	80	80	75
Bunch length, RMS	cm	3	1	1	1	2.2	1
Norm. emitt., horiz./vert.	μm	0.3/0.3	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4
Horizontal & vertical β*	cm	8/8	13.5/13.5	6/1.2	5.1/1	10.5/2.1	4/0.8
Vert. beam-beam param.		0.015	0.092	0.015	0.068	0.008	0.034
Laslett tune-shift		0.06	7x10 ⁻⁴	0.055	6x10 ⁻⁴	0.056	7x10 ⁻⁵
Detector space, up/down	m	3.6/7	3.2/3	3.6/7	3.2/3	3.6/7	3.2/3
Hourglass(HG) reduction			1	0.	87	0.1	75
Luminosity/IP, w/HG, 1033	cm ⁻² s ⁻¹	2	.5	21	.4	5.	.9

For the electron ring, we consider Ee=3, 5, 10 GeV For the ion ring, we consider Ep=100 GeV (middle column)

eRHIC Baseline *e-p* Parameters

Parameter	hadron	electron
Center-of-Mass Energy [GeV]	10)4.9
Energy [GeV]	275	10
Number of Bunches	(13	320
Particles per Bunch [10 ¹⁰]	6.0	15.1
Beam Current [A]	1.0	2.5
Horizontal Emittance [nm]	9.2	20.0
Vertical Emittance [nm]	1.3	1.0
Hor. β -function at IP β_x^* [cm]	90	42
Vert. β -function at IP β_y^* [cm]	4.0	5.0
Hor./Vert. Fractional Betatron Tunes	0.3/0.31	0.08/0.06
Horizontal Divergence at IP [mrad]	0.101	0.219
Vertical Divergence at IP [mrad]	0.179	0.143
Horizontal Beam-Beam Parameter ξ_x	0.013	0.064
Vertical Beam-Beam Parameter ξ_y	0.007	0.1
IBS Growth Time longitudinal/horizontal [hours]	2.2/2.1	-
Synchrotron Radiation Power [MW]	-	9.18
Bunch Length [cm]	5	1.9
Hourglass and Crab Reduction Factor	0.	.87
Luminosity [10 ³⁴ cm-2sec-1]	1.	.05

(for collision at highest luminosity)

First a Brief Summary for JLEIC ...

- Machine broadband impedance use impedance budget in existing machines as reference
- Single-bunch Instability

Comparing threshold impedance with machine impedance

- Machine narrowband impedance Cavity design with HOM couplers
- Coupled-bunch Instability using Zotter's formula for even bunch fill

		Electron		Proton
E [GeV]	3	5 :	10	100
Single bunch longitudinal instability			•	٠
Single bunch transverse instability		•		•
Coupled bunch longitudinal instability		Require state-of-art fast bunch-by-bunch		•
Coupled bunch transverse instability		feedback system		
Electron cloud				Ok for TMCI Question for CBI
lon effects		•		

Broadband Impedance Estimation

JLEIC e-Ring

Broadband Impedance	Reference: PEP-II	Reference: SUPERKEKB
<i>L</i> [nH]	99.2	28.6
$\left Z_{_{\parallel}} / n \right $ [Ω]	0.09	0.02
k_{\parallel} [V/pC]	7.7	19
$\left Z_{\perp}\right \left[\mathrm{k}\Omega/\mathrm{m}\right]$	30	6.5

- JLEIC plans to use PEP-II vacuum systems
- Effective impedance is bunch length dependent

JLEIC ion-Ring

Broadband Impedance	Reference: PEP-II
<i>L</i> [nH]	97.6
$\left Z_{_{\parallel}} / n \right $ [Ω]	0.08
k_{\parallel} [V/pC]	8.6
$\left Z_{\perp}\right $ [k Ω/m]	40

- The short bunch length (1.2cm) at collision is unprecedented for the ion beams in existing ion rings
- Bunch length varies through the whole bunch formation process

Longitudinal Single Bunch Instability

• Longitudinal Single-Bunch Instability Threshold

$$\left|\frac{Z_{\parallel}(n)}{n}\right|_{\text{eff,th}} = \frac{2\pi |\eta| (E / e)\sigma_{\delta}^{2}}{I_{peak}}$$

		PEP-II (LER)		JLEIC Electr	on Ring	JLEIC p-Ring		
	E (GeV)	3.1	3	5	10	100		
	$I_p(\mathbf{A})$	113	59.0	62.35	50.6	15.6		
	$\eta (10^{-3})$	1.31	1.09	1.09	1.09	6.22		
	σ_{δ} (10 ⁻⁴)	8.0	2.78	4.55	9.28	3.0		
	$Z_{\parallel}/n \Big _{ m eff,th} [\Omega]$	0.145	0.027	0.125	1.16	22.5	🔿 Stable	9
Es [.] im Z _{II/}	timated e-Ring pedance $/n\Big _{eff} \approx 0.1 \Omega$	Stable	Unstable	 Marginally Stable 	Stable	Estimated p-F impedance $\left Z_{\parallel}/n\right _{\text{eff}} \approx 0.1 \ \Omega$	ling	

Alternative Beamline Configurations at Low Energies

z (m)

Transverse Single Bunch Instability

• Transverse Mode Coupling Instability Threshold

$$\left|Z_{\perp}(n)\right|_{\text{eff,th}} \propto \frac{(E/e)v_{s}}{\langle \beta_{\perp} \rangle I_{peak}}$$

(should include bunch lengthening effects)

		PEP-II (LER)		JLEIC Electron	n Ring	JLEIC p-Ring
	E (GeV)	3.1	3	5	10	100
	$I_p(\mathbf{A})$	113	59.0	62.35	50.6	15.6
	V_{s} (10 ⁻²)	3.7	0.88	1.46	2.51	5.3
	ig	20	13	13	13	64
	$\left Z_{\perp}\right _{\rm eff,th}$ [M Ω / r	n] 1.2	0.81	2.25	9.0	63
Μ	achine:					
Z_{\perp}	≤0.1MΩ/m	Stable		All Stable		

Bunch Formation Process (JLEIC)

The ion bunch goes through a complicated formation process

Bunch parameters keep varying during the bunch formation process, so instability threshold keeps changing

TMCI with space charge, and LLD, could takes place at injection, etc.

Narrowband Impedance Estimation: JLEIC e-Ring

• RF cavity in e-Ring

PEP II cavity 476 MHz, single cell, 1 MV gap with 150 kW, strong HOM damping,

Narrowband Impedance : JLEIC ion-Ring

Longitudinal Coupled-Bunch Instability

Longitudinal Coupled-Bunch Instability

JLEIC Electron-ring (Gaussian bunch)					JLEIC	(P p-ring b	arabolic unch)
E [GeV]	3	5	10		E [GeV]	100	
$ au_{l=1}$ [ms]	2.9	4.0	72.8		$\tau_{_{l=1}} \; [\rm{ms}]$	30.7	
$ au_{l=2}$ [ms]	31.3	43.5	466		au [ms]	6.2	Caused
$ au_{\scriptscriptstyle E}~[{ m ms}]$	187.4	40.5	5.1		$v_{l=2}$ [III3]		BY Z ^{tw} !
	0.40	2 02	17 97		V_{RF} [IVI V]	42.6	
	0.40	2.02	17.07		Cavity	34	
Cavity Number	1	2	15		Number		

• Is the *I=2* mode real?

• Can it be damped? $T_0 = 75 \ \mu s$, $T_s = 20 \ T_0$, $\tau_g = 6 \ ms = 40 \ T_s$ what about damper noise?

• The combined effects of HOM from both RF and crab will be studied later

Transverse Coupled-Bunch Instability

JLEIC Electron-ring

E [GeV]	3	5	10
$ au_{a=0}$ [ms]	1.6	2.7	64
$ au_{a=1}$ [ms]	12.8	19.6	39.8
$ au_y$ [ms]	375	81	10.1
V_{RF} [MV]	0.40	2.02	17.87
Cavity Number	1	2	15

(for deQ factor=1)

(assume ξ =1, Δv_{β} =3e-04)

JLEIC p-ring					
E [GeV]	100				
$\tau_{a=0}$ [ms]	24.4				
$\tau_{a=1}$ [ms]	805				
$ au_{y}$ [min]	>30				
V_{RF} [MV]	42.6				
Cavity Number	34				

(for deQ factor=1) (assume ξ =1, Δv_{β} =3e-04)

Other Narrowband Impedances

JLEIC IR Chamber (design is still on-going)

Crab Cavity

(design is still on-going)

3-cell 952.6 MHz rf dipole with coaxial couplers

e-Ring: 2 crab cavities ion-Ring: 8 crab cavities

Electron Cloud in the JLEIC Ion Ring

- Electron Cloud Build up
 - Long ion bunch with low rep rate (in conventional ion ring)

• Short ion bunch with fast rep rate (in JLEIC)

Short-bunches:

e-cloud build up rapidly and saturate around the neutralization density

$$\rho_{neu} = \frac{N_b}{\pi b^2 s_b}$$

Electron Cloud in the JLEIC Ion Ring

• Electron Cloud Build-up

Figure 4: Time evolution of electron cloud for beam pipe with different radii. Simulations are run for 3350 consecutive bunches.

 Single-bunch head-tail instability from e-cloud

The instability threshold for the e-cloud density (two-particle model)

$$\rho_{th} = \frac{2\gamma Q_s A}{\pi r_p Z C \beta_y} = 1.7 \times 10^{13} \text{ m}^{-3}$$

$$\rho_{th} \gg \rho_{sat} = \frac{N_b}{\pi b^2 s_b} = 2 \times 10^{12} \text{ m}^{-3} \text{ (stable)}$$

- E-cloud caused coupled-bunch instability for PEPII-LER
- E-cloud effects in JLEIC require careful numerical studies, especially for the process of bunch formation in the ion ring

Growth time of FBII for the JLEIC e-Ring

• Possible mitigation method

- Use chromaticity to damp FBII
- Use multiple bunch trains to reduce the growth amplitude
- Natural Landau damping from beam-beam tune-shift spread
- Comprehensive numerical modeling of FBII and its mitigation will be performed

Collective Instabilities in eRHIC (Mike Blaskiewicz)

e-Ring

- Longitudinal and transverse single bunch instabilities are Landau damped
- Longitudinal coupled-bunch instability is mitigated by damper
- Transverse coupled-bunch instability set the threshold current (Landau damping from beam-beam tune spread included) $I_e^{th}=2.7 \text{ A}$ at $E_e=10 \text{ GeV}$ $I_e^{th}=1.7 \text{ A}$ at $E_e=5 \text{ GeV}$ 3^{rd} harmonic cavity is used to increase $Q_e^{th}=48nC$ (by coupling synchrotron tune spread to transverse via chromaticity)
- Ion effect
 - a significant fraction of ions survive the abort gap and can allow the tail of the bunch train to drive the head of the bunch train
 - Landau damping by Beam-beam tune spread

Ion-Ring

- coating the vacuum chamber with copper to reduce the heat load on the cryosystem
- plan to add amorphous carbon to reduce secondary yield
- working on a backup plan involving copper coated inserts.

Ion Effects in eRHIC

- Simulation
 - Ion creation, drift, and interaction with e-bunch, at distributed ion slices around the ring
 - Gaussian electron bunch transported in between ion slices, and interact with ions via EM interaction
 - Beam-beam kick (thin lens model)
 - Results
 - H₂ unstrapped within the bunch train
 - CO is trapped within the bunch train
 but unstable when gap is included
 - Considerable CO survive a 10% gap

Beam-beam Damping of Ion Instability in eRHIC

30

time (ms)

35

Analytical estimation ⁵

$$\left(\frac{\partial}{\partial t} + \omega_0 \frac{\partial}{\partial \theta}\right)^2 y_e + \omega_y^2 y_e = \omega_e^2 y_I$$
$$\left(\frac{\partial^2}{\partial t^2} + \frac{\omega_I}{Q_I} \frac{\partial}{\partial t} + \omega_I^2\right) y_I = \omega_I^2 y_e$$

Take $y_{e,I}(\theta,t) = \hat{y}_{e,I} \exp(in\theta - i\Omega t)$ with $\Omega \approx \omega_{I}$. The unstable mode has $\operatorname{Im}(Q_{y}) = \frac{r_{e}\lambda_{I}Q_{I}c^{2}}{2\omega_{0}\omega_{v}\gamma\sigma_{v}\sigma_{v}}$ Growth rate $\operatorname{Im}(Q_{y}) = 0.0051$

~ agree

Beam-beam tune shift=0.05 Δ =0.01 can suppress: Im(Q_y)=0.0042

Dispersion Relation

Use parabolic distribution Function for dispersion function

3. MCBI in an EIC

4. Summary

- We've done some preliminary assessment of instabilities in JLEIC and eRHIC, and see areas vulnerable for instability
- More detailed analysis and simulations will be performed, especially when multiple mechanisms are involved
- We'll seek more active methods to mitigate the instabilities
- Community support is important for EIC designs. We welcome collaborations.

Thank you for your attention!