

Mitigation of Space Charge Effects Using Electron Column at IOTA Ring

Chong Shik Park (KU), Ben Freemire (Euclid Techlabs), Chad Mitchell (LBNL), and Eric Stern (FNAL) ICFA mini-Workshop on Mitigation of Coherent Beam Instabilities in particle accelerators 23-27 September 2019 Zermatt, CH

Outline

- Motivation
- Space Charge Compensation at IOTA Ring
- Simulation Methods
- Early Works
- Multi-Pass SCC Results
- Conclusion

* Acknowledgement: B. Freemire, C. Mitchell, E. Stern, and V. Shiltsev

Space Charge: Crucial Challenge at High Intensity

Mitigation of Space Charge Effects

Compensate

- Add Opposite Charges
- Electron Lens
- Electron Column

Integrable Optics Test Accelerator (IOTA) Ring at Fermilab

Circumference = 40 m, 70 MeV/c proton beam

SCC Using Electron Column @ MCBI2019 | Chong Shik Park, Ph.D. | Korea University

Space Charge Compensation (SCC) at IOTA Ring

- Two ways of SCC are being studied at IOTA
 - Co-propagating beam of opposite charge (electron lens)
 - Robust, precise control of transverse profile of the e-beam
 - Experimentally mature "Swiss Knife," employed in Tevatron, RHIC, and now LHC.
 - Y. Alexahin's talk (Tuesday Morning)
 - Passive compensation of the proton beam (electron column)
 - Self-ignition: Use protons to ionize residual gas and to generate electrons
 - Electrons are approximately rest longitudinally compared to co-moving electrons in electron lens
 - Trap/Match/Control the electrons and their profile solenoid and electrodes.

Proposed Experimental Setup for Electron Column

- Space charge effects can be compensated by making proton beam pass through plasma column of opposite charge with matched distribution
- In linear machines, this concept was successfully applied to transport high-current low energy proton and H⁻ beam (gas focusing), Gabor lens, etc.
- In circular machines, e-p instabilities can be suppressed using an external magnetic field of sufficient strength

[[]Courtesy of N. Chauvin, ICIS'11]

* V. Shiltsev et al. The Use of Ionization Electron Columns for Space-Charge Compensation in High Intensity Proton Accelerators AIP Conf. Proc. 1086, 649 (2009)

Our Approach to Space Charge Compensation Using Electron Column at IOTA Ring

- In IOTA, we will use e-lens' central solenoid for e-column operation.
 - Plasma column with electrons compensates Coulomb repulsion of proton beam
- Ionization of residual gas by proton beam inside the column
 - Vacuum pressure also plays an important role to control the electron distribution
- Magnetic field stabilizes the e-column, and prevents e-p instabilities
 - Confines electrons transversely
 - Strong enough to suppress e-p instabilities
 - Weak enough to make positive ions escape
- Requires Electrodes to longitudinally confine electrons inside the column
- Investigate dynamics of electrons and ions with external E and B fields
 - Use Warp3D code for beam dynamics simulations inside of E-Column
 - Use Synergia code for beam dynamics simulations in the rest of the ring
- Goal: Match/control the transverse profile of electrons with B-field, voltages on electrodes, and vacuum pressure for multi-turn through IOTA ring
 - Match transversely with solenoid field and electrodes
 - Compensate longitudinally with electrodes
 - Multi-turn simulations in IOTA ring with pulsed beam

IOTA and SCC Simulation Parameters

Beam Parameters		Hardware Parameters	
Beam Species	Proton	Column Length	1 m
Beam Energy	2.5 MeV (p = 70 MeV/c)	Pipe Radius	2.54 cm
Beam Current	8 mA	Electrode Positions	0, 100 cm
Beam Pulse Length	1.77 μs	Electrode Strength	-5 V
Beam Distribution	KV (transverse), Step function (longitudinal)	Solenoid Field	0.1 T

Gas Parameters		Numerical Parameters		
Gas Species	Hydrogen	Particles Injected/Step	500	
Gas Density	1.65x10 ¹³ cm ⁻³ (5x10 ⁻⁴ torr)	Grid Spacing, x,y,z	0.5, 0.5, 1.0 cm	
Ionization Process	$p + 2H_2 \rightarrow p + e + H_3^+ + H$	Time Step	70 ps	
Ionization Cross Section	1.82x10 ⁻¹⁷ cm ²	Simulation length	1.83 µs	
Plasma Electron Energy, Spread	45 eV, 19 eV	Number of Passes	2	

09/24/19

Early Results

Gaussian (Transverse) and Uniform and Coasting (Longitudinal) Beam

 Initial optimization of Column parameters (gas density, electrode potential, magnetic field) performed using constant beam

C.S. Park et al, NAPAC2016

Space Charge Compensation after First Pass

KV (Transverse) and Step Function (Longitudinal) Beam

- To quantify effects of Space-Charge Compensation, simulations with ionization (SCC) and without ionization (no SCC) turned on
- Significant reduction in radial electric field within beam radius observed
- Density of electrons approaching that of beam
- Unwanted ions more homogeneously distributed

SCC Using Electron Column @ MCBI2019 | Chong Shik Park, Ph.D. | Korea University

Space Charge Compensation after Second Pass

- Distributions taken at center of Column in z and y
- Transverse distribution of electrons still closely matched to that of beam
- Ion density also surpasses beam density
 - Leads to reduction in space-charge compensation
 - Can be mitigated by reducing gas density and/or magnetic field strength

SCC Using Electron Column @ MCBI2019 | Chong Shik Park, Ph.D. | Korea University

Conclusion

- Simulations results show that the density profile of e-column can be tuned with axial B-field, electrode voltages, and vacuum pressure for (partial/full/over) SCC.
- Simulations of the Space Charge Compensation using an Electron Column shows positive effects to reduce radial electric fields inside the pulsed beam
- However, these reduction is about 50 % after the second pass
- Additional optimization required to find suitable settings for E and B fields as well as gas pressure for each turn.
- Electron and ion distributions for each turn need to be monitored precisely
- Longer period (multiple passes throughout the ring) of simulations to be investigated.
- Evolution of tune foot print and phase space to be studied.

Thank you for your attention!