Mitigation of Coherent Beam Instabilities in FCC-ee

## M.Zobov, E.Belli, M.Migliorati

### ICFA mini-Workshop MCBI-2019 Zermatt, 23-27 September 2019



Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Frascati









INFN

Istituto Nazionale di Fisica Nucleare

Sezione di Roma

# OUTLINE

- 1. Future Lepton Circular Collider: brief introduction and parameters
- 2. FCC-ee wake fields and coupling impedance
- 3. Impedance-related beam instabilities
- 4. Two stream instabilities: ion instabilities and e-cloud effects
- 5. Other effects
- 6. Summary

# **FCC-ee** parameters

The European Physical Journal



Special Topics

#### FCC-ee: The Lepton Collider

Future Circular Collider Conceptual Design Report Volume 2

Michael Benedikt et al. (Eds.)



#### 1364 contributors from 351 institutes

|                                                                   | Z              | w              | н             | t              | t            |
|-------------------------------------------------------------------|----------------|----------------|---------------|----------------|--------------|
| Beam energy [GeV]                                                 | 45.6           | 80             | 120           | 175            | 182.5        |
| Circumference C [km]                                              |                |                | 97.75         |                | -            |
| RF frequency $f_{RF}$ [MHz]                                       |                |                | 400           |                |              |
| Arc cell                                                          | 60°/60°        | 60°/60°        | 90°/90°       | 90°/90°        | 90°/90°      |
| RF voltage $V_{RF}$ [GV]                                          | 0.1            | 0.75           | 2.0           | 8.8            | 10.3         |
| Momentum compaction $\alpha_c [10^{-5}]$                          | 1.48           | 1.48           | 0.73          | 0.73           | 0.73         |
| Horizontal tune $Q_x$                                             | 269.14         | 389.124        | 389.13        | 389.108        | 389.108      |
| Vertical tune $Q_y$                                               | 267.22         | 391.20         | 391.20        | 391.18         | 391.18       |
| Synchrotron tune $Q_s$                                            | 0.025          | 0.0506         | 0.0358        | 0.0598         | 0.0622       |
| SR energy loss/turn $U_0$ [GeV]                                   | 0.036          | 0.34           | 1.72          | 7.8            | 9.2          |
| Longitudinal damping time $\tau_l$ [ms]                           | 415            | 77             | 23            | 7.5            | 6.6          |
| Beam current <i>I</i> [mA]                                        | 1390           | 147            | 29            | 6.4            | 5.4          |
| Number of bunches/ring                                            | 16640          | 1300           | 328           | 40             | 33           |
| Bunch population $N$ [10 <sup>11</sup> ]                          | 1.7            | 2.3            | 1.8           | 3.2            | 3.35         |
| Horizontal emittance $\varepsilon_x$ [nm]                         | 0.27           | 0.84           | 0.63          | 1.34           | 1.46         |
| Vertical emittance $\varepsilon_y$ [pm]                           | 1              | 1.7            | 1.3           | 2.7            | 2.9          |
| Energy spread<br>- $\delta_{dp,SR}$ [%]<br>- $\delta_{dp,BS}$ [%] | 0.038<br>0.132 | 0.066<br>0.165 | 0.099<br>0165 | 0.144<br>0.196 | 0.150<br>0.2 |
| Bunch length<br>- $\sigma_{z,SR}$ [mm]<br>- $\sigma_{z,BS}$ [mm]  | 3.5<br>12.1    | 3.0<br>7.5     | 3.15<br>5.3   | 2.75<br>3.82   | 2.76<br>3.78 |

Lower beam energy, longer damping times, higher beam intensities and highest number of bunches

# FCC-ee is a particle factory with an unprecedented luminosity

## 

# Main ingredients

1. Two separate rings allow colliding many bunches

2. Crab waist collision concept (low emittance, low beta,

high beam-beam parameter)

3. Longer perimeter allows storing higher intensity beams with the same synchrotron radiation losses

# FCC-ee emittance is comparable with emittances of modern diffraction limited synchrotron light sources



Courtesy Yannis Papaphilippou





## **Beam Pipe Cross Section**

The round cross section has been chosen in order to avoid the betatron tune shift with multibunch beam current due to quadrupolar resistive wall wake fields

$$\frac{dQ_{\beta}}{dI} = \pm \left(\frac{\pi \left(1 + b^2 / d^2\right)}{48Q_{\beta}}\right) \left(\frac{Z_0}{E_0 / e}\right) \left(\frac{R}{b}\right)^2 \left(\frac{L}{C}\right) \qquad \begin{array}{l} \Delta Q_{\beta} \approx 0.42\\ I = 1.4A\\ 2b \times 2d = 70 \times 120mm^2 \end{array}$$

Additional antechambers are foreseen for pumping purposes and installation of synchrotron radiation absorbers

#### Twin dipole magnet



From Milanese's talk during FCC-ee Week, 2017

#### Quadrupole magnet



Beam pipes of other vacuum chamber components should possibly have similar shape



From R.Kersevan and C.C.Garion talk during FCC Week 2019

## Impedance of a coated beam pipe

A coating is required to suppress the e-cloud (beam induced multipacting) in the positron ring and/or for pumping purposes in both rings: NEG, TiN, AC



## For thin resistive coatings

- 1. The real part of the impedance does not depend on both the coating thickness and coating conductivity.
- 2. The imaginary part has an additional term depending on the coating thickness, while the dependence on the conductivity is very weak.



### Single bunch longitudinal dynamics



Best design solutions of vacuum chamber elements used in modern syncrotron sources and particle factories are considered for implementation in FCC-ee





**KEKB** bellows



SuperKEKB gate valve





SuperKEKB collimator



#### **CERN** bellows



DAONE bellows

DAΦNEinjection kicker



DAΦNE long. feedback kicker



## HOM absorbers in the IR





A.Novokhatski, E.Belli et al, PRAB, 20, 111005





From the talk of A.Novokhatski during FCC Week 2019

## Different HOM damping techniques are considered for RF cavities





5 Rectangular Waveguide (5RecWG)



3 Hook-type couplers + 1 Rectangular WG (3H1RecWG)





LHC-type couplers 2 Probe+2 Hook (2H2P)



From the talk of Shahnam Gorgi Zadeh during FCC Week 2019

# The wake fields and impedance have been evaluated for several most important vacuum chamber components















### Longitudinal Impedance Budget

| Component                 | Number   | $k_l \left[ V/pC \right]$ | <i>P</i> <sub><i>l</i></sub> [ <i>MW</i> ] |
|---------------------------|----------|---------------------------|--------------------------------------------|
| Resistive wall            | 97.75 km | 210                       | 7.95                                       |
| RF cavities               | 56       | 18.46                     | 0.7                                        |
| RF double tapers          | 14       | 6.12                      | 0.23                                       |
| Collimators               | 20       | 38.36                     | 1.45                                       |
| Beam Position Monitors    | 4000     | 31.47                     | 1.19                                       |
| Bellows with RF shielding | 8000     | 49.01                     | 1.85                                       |
| Total                     |          | 353.4                     | 13.4                                       |



#### \*100 nm NEG coating is considered

#### Bunch length and energy spread versus bunch intensity



## Transverse mode coupling instability (TMCI)

Differently from the longitudinal microwave instability TMCI is destructive.

It takes place when frequencies of different modes of transverse internal bunch oscillations merge



### **Transverse Coupled Bunch Instability**



## Distributed feedback system



 However the FCC ring lenght gives a very interesting chance to build "<u>feeding forward"</u> systems, producing damping rate even faster than 1 revolution turn. This can be possible applying the correction signal quickly than one revolution period.

> From A.Drago talk at ICFA mini-Workshop on Impedances and Beam instabilities, Benevento, 19-22 September 2017

## Electron cloud buildup at 45.6 GeV

| Element    | L[m]  | Magnetic field |
|------------|-------|----------------|
| Arc dipole | 23.44 | 0.014 T        |
| Arc quad   | 3.1   | ±5.65 T/m      |
| Arc drift  | _     | -              |
| QC1L1      | 1.2   | -96.3 T/m      |
| QC1L2      | 1     | 50.3 T/m       |
| QC1L3      | 1     | 9.8 T/m        |
| QC2L1      | 1.25  | 6.7 T/m        |
| QC2L2      | 1.25  | 3.2 T/m        |



- Realistic shape of the vacuum chamber in the arcs
- Round chamber of 15 mm (20 mm) radius in Q1 (Q2)
- Electron cloud build-up in the arcs and IR magnets
  - □ Initial uniform distribution 10<sup>9</sup> e<sup>-</sup>/m
  - SEY scan
  - □ Nominal bunch intensity
  - □ Filling pattern: 80b + 25e
  - Bunch spacing scan: 2.5 ns, 5 ns, 15 ns

## e-cloud buildup and heat load in the arc dipoles



### e-cloud buildup and heat load in the arc quadrupoles (top) and drifts (bottom)



#### e-cloud heat load in the IR quadrupols





Threshold SEY for IR quadrupoles

#### e-cloud single bunch instability threshold



K.Ohmi and F.Zimmermann, Phys.Rev.Lett.85 (2000) 3821

| Energy <i>E</i> <sup>0</sup> [GeV]                  | 45.6   | 80      | 120    | 175    |
|-----------------------------------------------------|--------|---------|--------|--------|
| Electron frequency $\frac{\omega_e}{2\pi}$ [GHz]    | 393.25 | 454.136 | 308.08 | 375.58 |
| Electron oscillation $\frac{\omega_e \sigma_z}{c}$  | 28.847 | 31.41   | 20.34  | 19.28  |
| Electron density threshold $\rho_{th}[10^{10}/m^3]$ | 2.29   | 5.39    | 12.6   | 34.6   |
|                                                     |        |         |        |        |

To be compared with the average density of 1.64x10<sup>10</sup> m<sup>-3</sup> near the central area estimated by Ohmi-san for FCC-ee Z (Int.J.Mod.Phys. A34 (2019) 1940001): nominal intensity, 20 ns, no antechamber

# An extensive measurement campaign was performed at CERN to characterize TiZrV films with thickness below 250 nm



E.Belli et al., Phys.Rev.Accel.Beams 21 (2018) no.11, 111002



(a) Carbon monoxide (A = 28).

# Partial pressure thresholds for residual gas species are probably tighter than vacuum specifications allow

|                   | H <sub>2</sub> | N <sub>2</sub> , CO | CO <sub>2</sub> |
|-------------------|----------------|---------------------|-----------------|
| Arcs              | -              | 0.1 nTorr           | 50 pTorr        |
| Straight sections | 0.5 nTorr      | 5 pTorr             | 5 pTorr         |

## Mitigation is required

## Length of bunch train

Efficient only for heavier species in the straight sections, in the arcs would have to go to less than 10-20 bunches for an effect

### Bunch spacing

A larger bunch spacing could increase thresholds in arcs and straight sections Test for CO<sub>2</sub> in the arcs with 7.5 ns bunch spacing shows significant improvement pressure threshold increased at least by a factor of 20

### Feedback

#### Generally efficient at suppressing coupled bunch instabilities

A damping time of ~10 turns  $\rightarrow$  realistically achievable pressure thresholds However, emittance growth may still occur

From the talk of L.Mether, A.Oeftiger and G.Rumolo at FCC Week 2018

## Coherent beam-beam instability with a crossing angle

Coherent instability:  $\varepsilon_x$  dependence on  $v_x$  and  $v_z$ . Quasi-strong-strong simulations.  $U_{RF}$  = 250 MV (red) and 100 MV (green, blue).



The distance between resonances is  $v_z$ . The width depends on  $\xi_x$  and the order of resonances. We need to reduce  $\xi_x / v_z$  ratio and increase the order of resonances near the working point.  Increase the momentum compaction factor: ν<sub>z</sub> and σ<sub>z</sub> grow, ξ<sub>x</sub> decreases.

This is done by changing FODO arc cell, which also leads to an increase in  $\varepsilon_x$ . However,  $\varepsilon_y = 1$  pm can be achieved. Besides, the threshold of microwave instability is raised.

• Decrease  $\beta_x^*$  (and thus  $\xi_x$ ).

This leads to a decrease in the energy acceptance. Eventually it can be reduced to 15 cm.

Reduce the RF voltage.

This decreases  $v_z$  and  $\zeta_x$  in the same proportion, but increases the order of resonances near the w.p.

 Neat choice of v<sub>x</sub> between synchro-betatron resonances.

#### From D.Shatilov's talk at EPS-HEP Conference 2019

#### References

- 1. K.Ohmi et al., Phys.Rev.Lett. 119 (2017) no.13, 134801
- 2. D.Shatilov, ICFA Beam Dyn.Newslett. 72 (2017) 30-41

## Interplay of different effects

- 1. Instabilities in a real lattice: tune, chromaticity, betatron functions, coupling, nonlinear detuning etc. (several talks at this Workshop)
- 2. Beam-beam interaction and impedance, both transverse and longitudinal. For example:
  - a) beamstrahlung helps to suppress the microwave instability in FCC-ee (this talk)
  - b) collisions with a crossing angle can provide Landau damping of the longitudinal multibunch instabilities (A.Drago's talk)
  - c) damping of transverse instabilities in beam-beam collisions (known experience)
- 3. Beam-beam interaction and ion related instabilities (see, for example, Beam-beam damping of the ion instability, M. Blaskiewicz, TUPLM11, NAPAC2019)
- 4. e-Cloud effects and beam-beam interaction (observations at several colliders)
- 5. Space charge and beam-beam interaction (should be important for SuperKEKB)
- 6. Other effects

# Summary of mitigation techniques

#### 1. Impedance and impedance-related instabilities

a) choice of the vacuum chamber shape to eliminate the quadrupolar wakes

- b) the vacuum chamber pipe should have the same cross-section almost everywhere in order to reduce the geometric impedance
- c) thin coating to reduce the RW impedance
- d) vacuum chamber component design using the experience from other high current colliders and synchrotron radiation sources
- e) novel designs: IR HOM absorbers, HOM suppressors in the RF cavities, other
- f) distributed feedback systems
- g) special bunch patterns to reduce lost HOM power

#### 2. e-Cloud effects

a) choice of the bunch patterns and bunch separation

- b) coating with low SEY to reduce the heat load and stay under the instability threshold
- c) antechambers

d) fast feedback systems

3. Ion related instabilities: lower pressure, dedicated beam patterns, lattice parameters, feedbacks

4. Interplay between different effects/instabilities can be important and should be studied in detail