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Introduction

* In DAFNE, the Frascati e+/e- collider, the crab waist collision
scheme has been successfully implemented in 2008 and 2009, for

the Siddharta experiment (and in the following years for the
KLOE-2 detector too).

* During the Siddharta collision operations, an unusual synchrotron
damping effect has been observed.

* Switching off the longitudinal feedback and having beam currents
in the order of 200-300 mA, the positron beam of course becomes
unstable

* Nevertheless the longitudinal instability 1s damped by bringing
the positron beam 1n collision with a high current electron beam
(~2A).

* Besides, doing this, we have observed a shift of =-600Hz 1n the
residual synchrotron side bands.
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Instrumentation

* Precise measurements on this effect
have been performed by using two
different instruments:

— a commercial Real-time Spectrum Analyzer
RSA 3303 by Tektronix

— the diagnostics capabilities of the DAFNE
longitudinal bunch-by-bunch feedback
(developed in collaboration with SLAC and
LBNL in 1993-96) >
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Acquisitions from the Spectrum Analyzer

Transverse and longitudinal pickup made by 4 high
frequency buttons

HY9 (MA-COM) hybrids to have difference m H & V
~30 m. low attenuation cable

Bandpass filter (@ 360MHz, +/- SMHz)

Amplifier '
Spectrum analyzer
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Block diagram of the longitudinal feedback system
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Longitudinal sidebands in e+ beam
(set of measurements recorded at DAFNE 1n 11/2009)
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Longitudinal sidebands in e+ beam
colliding with 2A e- beam (100 bunches/120 buckets)

Tekironix RSA 3203A
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In colhsmn (--) out of collision
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Data downloaded from the spectrum analyzer RSA3303 to a PC.
The highest peak 1s the e+ 118-th harmonics. Data are elaborated by MATLAB:

in red beams out of collision, in blue beams 1n collision.

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

I e i e i e e R —
1 1 1 1 1 1 1
1 1 1 1 1 1 1

A0 b--

B0 - -

a0 b--

dBm

=100

120 i | i i i i i
[ 2000 A000 BOO0 aaao 10000 12000 14000 100

1MHz frequency span Number of bins

23-27 Sep 2019 Alessandro Drago MCBI 2019 10



Zoom of the previous figure, showing the longitudinal and horizontal tunes
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Another case, similar to the previous figure, particular of the longitudinal sidebands.
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Diagnostics by the DAFNE

longitudinal bunch-by-bunch

feedback:

front-end data plotted in frequency

domain (all bunches)
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Signal spectrum averaged from all the bunch [data recorded by longitudinal feedback]
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Comments on the experimental data (1/2)

* This damping effect has been observed 1n
DAFNE for the first time during collisions with
the crab waist scheme.

* Our explanation 1s that beam collisions with a
large crossing angle produce a longitudinal tune
shift and a longitudinal tune spread, providing
Landau damping of synchrotron oscillations.
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Comments on the experimental data (2/2)

* Experimental observations and measurements at DAFNE have shown that
beam-beam collisions can damp the longitudinal coupled bunch instability.

— 1) Bringing into collisions a high current electron beam with an unstable
positron one was stabilizing the synchrotron oscillations of the e+ beam,
even with the longitudinal feedback system switched off.

— 2) Besides, a negative frequency shift of positron beam synchrotron
sidebands has been observed when colliding the beams.

*  We attribute these two effects to a nonlinear longitudinal kick arising due to
beam-beam interaction under a finite crossing angle.

* It is worthwhile to note here that we have observed this effect clearly only
after implementation of the crab waist scheme of beam-beam collisions at
DAFNE having twice larger horizontal crossing angle with respect to the
previous operations with the standard collision scheme

In the following, we show an analytical expression for the synchrotron tune
shift, that is also a measure of the synchrotron tune spread, and compare the
formula with numerical simulations.
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Beam-beam kick formulae
(x Ztg(@/ 2))2 y° }

exp{ ((Cf +o2tg’( 9/2)) ) (2Gy2+w)
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,_2nN T (((7 +oltg’( 9/2)) ) (20§+w)
S (2( B Y R I e
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In collisions with a crossing angle, the longitudinal kick of a particle is given by the projection
of the transverse electromagnetic fields of the opposite beam onto the longitudinal axis of the
particle itself. The kicks that the test particle receives while passing the strong beam with rms

sizes 0, 0,, 0, under a horizontal crossing angle 0, are in the above formulae.

X, y, z are the horizontal, vertical and longitudinal deviations from the synchronous particle

travelling on-axis, respectively.
N is the number of particles in the strong bunch, vy 1s the relativistic factor of weak beam.
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For the on-axis test particle (x =y = 0) the longitudinal kick is given by

exp {_ (Ztg(é? / 2))2 }
=2 (9/2)Td 2o +021g*(0/2))+ w)
O 0] ot o]

For small synchrotron oscillations z << o, the exponential factor in the
integral can be approximated by 1 and at the end the formula becomes:

' =—

N e

Y (G + ot )-I-\/(G +0f /2))6
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Then, analogously to the transverse cases, we can write the expression for the
synchrotron tune shift:

Al tg ' (612)

2717/ ((a + ot )+a\/(a + 0ot /2))]

Remembering that the longitudinal beta function can be written as:
L n o,
Z vzoa)o (o-E E )
with ¢ being the velocity of light; n the slippage factor, v, the unperturbed

synchrotron frequency and @, the angular revolution frequency, we obtain the
final expression for the linear tune shift:

Weak
GzO 2
1l (617)
é _ r \ strong [(GE | E )j

T (G;+aftg2(e/2))+a;\/(aj+ajtg2(9/z)))w
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For the case of flat beams with (gy << \/gx 4 GZ tg (8 / 2))

the tune shift expression can be further simplified to

Weak
GZO

N Strong (GE | E )

zﬂ_ywea )

& =~

Strong

For the flat bunches the synchrotron tune shift practically does not depend on the vertical
beam parameters. So, one should not expect any big variations due to crabbing and/or hour-
glass effect. Since particles with very large synchrotron amplitudes practically do not “see”
the opposite beam (except for a small fraction of synchrotron period) their synchrotron
frequencies remain very close to the unperturbed value v, For this reason, like in the

transverse cases, the linear tune shift can be used as a measure of the nonlinear tune spread.
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Numerical simulations

In order to check validity of the previous formulae, we performed numerical
simulations with the beam-beam code LIFETRAC.

The synchrotron and betatron tunes in the presence of beam-beam effects
are calculated by tracking and shown in the figure.

0.0115 E
0.011 %-
z
0.0105
Synchrotron tune dependence
0.01 .  onthe horizontal tune.
% The solid straight lines
0-0098 ‘_E, correspond to the analytically
— z predicted synchrotron tunes
0.0085
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Synchrotron tune dependence on normalized amplitude of synchrotron
oscillations (blue curve — tune dependence created by beam-beam collisions
alone, green — RF nonlinearity alone, red — both contributions).
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Comments (1)

First, our numerical simulations have confirmed that the synchrotron
tune shift does not depend on parameters of the vertical motion, such
as f3,and v,

Second, an agreement between the analytical and numerical estimates
1s quite reasonable for the horizontal tunes far from integers.

Quite naturally, in a scheme with a horizontal crossing angle,
synchrotron oscillations are coupled with the horizontal betatron
oscillations.

One of the coupling's side effects is the v_ dependence on v, which
becomes stronger in vicinity of the main coupling resonances.

In order to make comparisons with the analytical formula we need to
choose the horizontal betatron tune v_ closer to half-integer, where its

influence on v_is weaker.
The coupling vanishes for very large Piwinski angles.
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Comments (2)

 Since v_for DAFNE is rather close to the coupling resonance,

we will use numerical simulations in order to compare the
calculated synchrotron tune shift with the measured one.

* In particular, when colliding the weak positron beam with
500mA electron beam, the measured synchrotron frequency
shift was about -630 Hz (peak-to-peak).

* In our simulations we use the DAFNE beam parameters with
respectively bunch current N=0.9 x10' and bunch length
o. = 1.6 cm. These values give a result in the synchrotron tune

shift of —0.000232 corresponding to the frequency shift of
=720 Hz.

* In our opinion the agreement is good considering
experimental measurement errors and the finite width of
the synchrotron sidebands.
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PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 092803 (2011)

Synchrotron oscillation damping by beam-beam collisions in DA®PNE

Alessandro Drago, Pantaleo Raimondi, and Mikhail Zobov
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In DADNE, the Frascati e /e~ collider, the crab waist collision scheme has been successfully
implemented and tested during the years 2008 and 2009. During operations for the Siddharta experiment
an unusual synchrotron damping effect induced by beam-beam collisions has been observed. Indeed, the
positron beam becomes unstable above currents in the order of 200-300 mA when the longitudinal
feedback is off. The longitudinal instability is damped by colliding the positron beam with a high current
glectron beam (— 2 A) and a shift of = —600 Hz in the residual synchrotron sidebands is observed.
Precise measurements have been performed by using both a commercial spectrum analyzer and the
diagnostic capabilities of the DAD®NE longitudinal bunch-by-bunch feedback. This damping effect has
been observed in DAPNE for the first time during collisions with the crab waist scheme. Our explanation
is that beam collisions with a large crossing angle produce longitudinal tune shift and spread. providing
Landau damping of synchrotron oscillations.

DOI: 10.1103/PhysRevSTAB.14.092803 PACS numbers: 29.27.Bd, 29.20.db
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The Effect of Crossing Angle

e’ e~

In the ultrarelativistic case, electro-magnetic field from the opposite bunch is compressed
into a plane which is perpendicular to its trajectory.

The kick from the opposite bunch consists of two components: electric and magnetic. Their
absolute values are equal, but directions are different because of the crossing angle.

Particles are accelerated in the region before IP and decelerated in the region after IP. The

total energy change depends on the particle’s longitudinal coordinate. This is equivalent to ' ' '
the appearance of a nonlinear RF cavity. The effect was experimentally observed at the

DA®DNE collider [Phys. Rev. ST Accel. Beams 14 (2011) 092803].

The crossing angle “at collision” is increased by beam-beam interaction.

The total kick is orthogonal to the bisector of two trajectories, therefore op, =0. It means

that the center-of-mass energy at the IP is not affected, since /s =2 Jp__+p:_| (see also the
next presentation by P. Janot).

D. Shatilov

FCC Week 2019, Brussels



Conclusions

An unexpected synchrotron oscillation damping due to beam-beam
collisions experimental data have been collected by a commercial
spectrum analyzer and by the bunch-by-bunch longitudinal feedback
diagnostics

Same result from two different diagnostic tools

A simple analytical formula to explain synchrotron tune shift and tune
spread due to beam-beam collisions with a crossing angle has been
presented

The formula agrees well with the simulations when the horizontal tune is
far from the synchro-betatron resonances

The agreement 1s better for larger Piwinski angles.

Calculations have shown that at high beam currents the synchrotron tune
spread induced by the beam-beam interaction at DAFNE can be larger
than the tune spread due to the nonlinearity of the RF voltage. This may
result in additional Landau damping of the longitudinal coupled bunch
oscillations.

Simulations on this effect by LIFETRAC (Shatilov) and Guinea Pig
(Perez) are carring on for FCC mainly to evaluate the delta of energy
given by beam-beam kick at the IP (FCC week 2019).
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Thank you for the attention !
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