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Coupled bunch instability observed in
KEK-PF (1989-)

 KEK-PF, E=2.5 GeV L=186 m, Frf=500MHz, 2nd
generation light source. Positron storage was done to
avoid ion trapping instability.

* The instability is observed in positron multi-bunch
operation, N, ,,.,=200-300 (backet num.=312).

* Low threshold current for the instability, I, ~15-20mA,
while operation 300 mA

* The instability was not observed in electron storage.



lzawa et.al., Phys. Rev. Lett. 74, 5044 (1995).
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positron multibunch operation with uniform filling.

Only the

stored current is different from Fig, 2.



* Positron beam emits photons due to synchrotron radiation.

* Electrons are produced at the beam pipe wall due to
photo-emission, where electron production efficiency is ™
0.le’/y.

* Electrons are attracted by positron beam and interact them.
Electrons travel in the beam pipe 20-50 ns and absorbed
into the wall. Secondary electrons are produced at the
electron absorption.

* In multibunch operation (~5ns spacing), electrons are
supplied continuously, then electron cloud is formed.

* The electron cloud induces bunch-by-bunch correlation
and results coupled bunch instability.

K. Ohmi, Phys. Rev. Lett., 75, 1526 (1995).



Photo electron production model and
electron cloud formation in computer
simulation
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Electron density by simulation

Molecular density of 1atm 102> m3

60 bunches pass in every 8ns (KEKB).



Coupled bunch instability observed in KEKB

* Strong instability which causes beam loss was observed.
* Unstable mode depends on Solenoid ON/OFF.

M. Tobiyama et al., PRST-AB (2005)
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Measurement and simulation in BEPC

Positron electron

| Vertical instability was
| observed.

Guo, et al, PRST (2002).

* Mode spectra for electron cloud and ion instabilities
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K.Ohmi, PRE55,7550

Simulation of CBI (1997)

K.Ohmi, PAC97, ppl667.
Solve beam and electron motlon simulteneously
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Coupled bunch instability
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Figure 7: Horizontal mode spectrum in KEKB. Left
sicture is given by measurement with solenoid OFF [4,5].
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Right picture is simulated by electron cloud in drift space..
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Figure 8: Horizontal mode spectrum in KEKB. Left
sicture is given by measurement with solenoid ON [4,5].
Right picture is simulated by electron cloud in solenoid
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Coupled bunch instability due to
electron cloud In bendlng fleld

Measurement in DAFNE 15 ' .

) Figure 1: MODES
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Coherent motion of beam and
electron stripe in DAFNE

* Electron stripe is formed in bending
magnet.

* The beam and stripe move coherently,
then horizontal coupled bunch instability
IS Induced.
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Single bunch instability
Beam size blowup in KEKB

* Beam size blowup was observed above a threshold
current.

* The blowup is observed in multi-bunch operation, but
no bunch-by-bunch correlation in the bunch motion.

* Coherent or incoherent?
* It was concluded as coherent single bunch instability.
* Luminosity was limited by the beam-size blow-up.

* Instability signal proper to electron cloud induced
single bunch instability.
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Observation of single bunch instability

* The beam size blowup in KEKB is caused by

coherent instability.

Beam size blowup
Beam size vs-eurrent

L

=
T

L)

—

Sol.no; Mormelphal /153/4 [mnn’ﬂ?L_E‘;"Zﬂﬂl.Eﬂd.]i.dat]qrEd 1

Sol.fh; Normdphal /53,4 |mﬂi4§f!ﬂﬂlﬁﬂlii.dat|:ﬂ]ﬂa |

=]

1] 200 400 600 ano
LER curismb)

Fukuma et al.

oot

Instability signal

~Ny

J. Flanagan et al.



KEKB: measurement and simulation
of fast head-tail instability
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Solenoid winding in KEKB-LER

(0) A lot of permanent magnets were puts along the arc section
in the ring ~800m.

(1) The magnets (800m) are replaced by solenoid magnets
(Summer 2000).

(2) Additionally 500m magnets are wounded (Jan. 2001).
(3) Magnets were added in straight section (Apr. 2001).

(4) Add solenoids even in short free space (Summer 2001).
(5) Solenoid magnets cover 95 % of free space (~2005).

(6) Inside of % of Quadrupoles (20054F)
Managed by H. Fukuma et al.

Winding solenoid in PEP-II is earlier than KEKB.









Luminosity for Solenoid ON/OFF

* Luminosity was very low (~half) for Solenoid OFF.

 Maximum stored current is limited due to coupled bunch instability for

solenoid OFF

e Effect of added solenoid in 2000 end (+500m).

Specific luminosity for solenoid ON/OFF (measurement at May.2001)
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Add solenoids and luminosity increase Dec.
2000 and Mar. 2001

30
L (X 1 O ) L for solenoid ON/AOFF (2000 & 2001)

2800 L ; - . P T L -
<Llp. |.".-'I:1:3[31.'CI:I|IIE-II:II'|.'LLII'|'|HIS[.'T1'IIS|".-1I:II'II1'|.'LI.IIT|2'_'|:|'_'_12_25_2_3_13.'3‘»"‘ +

onger and longer

e LI|:|.||3 MNvdatal/CollisionLumHistThisMonth/Lum2000_12_23_6_5§ :’ﬂﬁ‘ti;‘:_i_ x
200 "< Llppl ."xrdata1."G|:|Ilisi|:|n.'LumHist.'Thisml:unth.'LumEI_ZIDE,E_,ﬁ‘ :..qqiaﬁmﬁ-., ------
AT
fif ) -
2400 | s 1 3 O O
200 il -
o 2000 |
é
= 1800 F

| Beam-beam tuning also

oo | { improves the luminosity.

'+ " 750mA
e Peak luminosity increased for adding solenoid magnets.



Daily integrated
luminosity

Luminosity of KEKB
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SuperKEKB

* C=3016.3m, e*(4GeV)-e(7GeV) circular collider
* Half crossing angle, ¢.=41.5mrad, 6,=6/5mm.

L Phose 2 (May 2018) | Phase 23 (e, e

B, *[mm]

B,*[mm] 4 4 2.16 2.40 0.27 0.30
g, [nm] 2.1 4.6 2.1 4.6 3.2 4.6
&,/¢, [%] 5 1.4 0.27 0.28
|, [mA] 340 285 0.64 0.51 1.44 1.04
&y 0.0053 0.0021 0.0028 0.0012
E~*v 0.019 0.013 0.0484 0.05 0.088 0.081
Ny unch 788 1576 2500

L [cm2s71] 1.3x1033 2x1034 8x103°

PAD_ 10 8 15.2 9.7 24.7 19.4



Instability simulation at SuperKEKB design stage
e Using code PEHTS
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Beam size blow-up in LER

* Beam-size blowup observed in KEKB has been seen in
early stage of SuperKEKB commissioning

. Threshold I300mA in Apr 19 (Y. Funakoshi)

. Electron cloud has been monitored at AL chamber w and w/o TiN coating (Y.

Suetsugu).

. Beast study threshold IY600mA, N, ,..,=1576 in May 17 (Nakayama et al)
. Aluminum bellows, which were not coated by TiN, were suspected as an electron

source.

. Permanent magnets were installed at the aluminum bellows.(Y. Suetsugu et al.)
. The blow up was suppressed. Systematic studies in 8 July ( H. Fukuma et al.)
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Simulation studies using beam study

condition

Threshold of the electron density
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Electron density at the blow-up
threshold

;Cz Simulated electron density at the threshold current
Only Al part

O Measured threshold current and density
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Tune shift measurement along bunch train

Tune shift along bunch train in LER
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Mitigation using permanent magnets

* Permanent magnets were installed on ~86% of the
drift spaces before Phase-2.

* Approximately 91% of the drift spaces were
covered with them before Phase-3.

Type-1 unit Magnetic field of Type-1 unit
T Typical strength ~ 60 G
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Vertical beam size measurement

* No beam size blowup up to 1.1mA by 4ns, while
design is 1.5mA.

* Small increase of beam size is seen, but luminosity
does not decreases in collision. Perhaps calibration
of beam size monitor is not perfect.

ECE study in Phase-2 ECE study in Phase-3 (preliminary).
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IR optics
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Tune shift and electron frequency of

A\Fy
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Radiation ©

equilibrium

amping anc

vertical emr

ittance

* Radiation damping ~5000 turns is taken into account.

* If electron density is in our assumption, no emittance
growth. 3x of assumption gives emittance increase.

* No sign of incoherent emittance growth
experimentally in 20109.
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Phase Il and Ill commissioning status
for electron cloud

e Start from March 2018
* Squeezing B*. (80mmx2mm in Jul 2019)

* Measurement of electron cloud instabilities,
coupled bunch and single bunch instabilities were
continued.

* Solenoid type of modes were observed in coupled
bunch modes (growth>~4ms, slower, Tobiyama).

* No single bunch instability (beam size blow-up)
1.1mA/bunch, Lsp=4ns (Design 1.4mA/b, 4ns).

 Electron cloud is well controlled.



Summary for electron cloud effects,
coherent and incoherent

* Coherent coupled bunch instability has been observed since
electron cloud .

* Unstable mode is determined by electron motion in cloud.

* Coherent single bunch instability has been observed at KEK
and SuperKEKB. Freq. signal corresponding head-tail motion
has been observed.

* Luminosity performance has been remarkably improved by
suppression of the electron cloud.

* Incoherent emittance growth has not been observed in
KEKB/SuperKEKB.

* Electron cloud instability and its mitigation are one of the
most prominent success of beam dynamics.






Coupled bunch instability

e Center of mass of each bunch oscillates around a
closed orbit, betatron oscilation.

* Correlation between bunches is chracterized by
mode number (p).

~Mm

* The mode number (u) is the periodicity in a snap
shot of bunch positions.



Oscillation mode (snap shot)

* Bunches travel with the light speed oscillating with betatron
frequency (o).
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BPM detects signal with |(h+L)wy+mg| for the beam with betatron oscillation.



* Inner bunch oscillation.

* Particles in a bunch oscillate transversely with betatron frequency,

simultaneously they oscillate along traveling direction relatively;
synchrotron oscillation (®.<< ooB).
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1 cm(electron)~100 m(proton)

* Combined oscillation of betatron with @z and synchrotron with o, ;
synchro-betatron oscillation.
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* Frequency observed at BPM is m; + nw,, where n is mode number
characterizes synchrotron sideband.

* No bunch-by-bunch correlation. Measurement a bunch with timing
gate is required.
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