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Elucidating the structure of surface sites using sensitivity 

enhanced NMR methods

Deni Mance
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 Involved in numerous industrial catalytic processes

- Metathesis - Epoxidation

- Dehydrogenation - Hydrogenation

- Polymerization ……….
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Heterogeneous Catalysts

Supported 

metal oxides

Zeolites Supported 

metal nanoparticles
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Heterogeneous Catalysts
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metal oxides

Zeolites Supported 
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Main goal:
Can we further improve these industrial catalytic processes?
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 What is the structure of the active sites?

 What are the roles of: supports, interfaces, additives, promoters, size and composition?

 How do these properties affect: Structure, Activity, Selectivity and Stability?
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Major aspects within the group

 Controlling the grafting of tailored 

molecular precursor (SOMC)

 Detailed characterization of surface species 

(spectroscopy and computational chem.) 

 Catalyst evaluation and further development
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Major aspects within the group

 Controlling the grafting of tailored 

molecular precursor (SOMC)

 Detailed characterization of surface species 

(spectroscopy and computational chem.) 

 Catalyst evaluation and further development

Today’s challenges and directions:
Bridging the gap between industrial and well-defined heterogeneous catalysts

Bridging the gap between single-sites and nanoparticle-based catalysts

Detailed and efficient structural characterization of surface species by NMR
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 Sample preparation – solid sample is impregnated with biradical solution, i.e. polarizing agent.

 Potential to enhance the signals by a factor of 660
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Dynamic Nuclear Polarization
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Dynamic Nuclear Polarization
Surface-Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization

DNP- SENS

e e = 250 (9 min in place of  1 year)
Theoretical limit: 660 in CPMAS SENS 
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Solid Polarization Matrixes

Gajan et al. JACS, 2013, 135, 15459.    Cavailles et al. ACIE 2018, 57, 7453.

Gajan et al. PNAS 2014, 111, 14693.

 DNP has been crucial to characterize

low abundant surface species
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Dynamic Nuclear Polarization
Surface-Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization
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 DNP has been crucial to characterize

low abundant surface species

 Performance tends to be unpredictable

 Radical or solvent might interact with the 

catalyst
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1H Detection in combination with fast MAS

Mance, D.; Sinnige, T.; Kaplan, M.; Narasimhan, S.; Daniëls, M.; 

Houben, K.; Baldus, M.; Weingarth, M, 

Angew. Chemie - Int. Ed. 2015, 54 (52), 15799–15803

KcsA BamA

Pinto, C.; Mance, D.; Sinnige, T.; Daniëls, M.; Weingarth, M,; 

Baldus, M., 

Nat Commun 9, 4135 (2018)
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 Use of 1H detected experiments to overcome sensitivity issues

 Small quantity of sample required

 No modification of sample required
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 Use of 1H detected experiments to overcome sensitivity issues

 Small quantity of sample required

 No modification of sample required

 Demonstrate performance on a unlabelled system (Vanadium Oxide Catalyst)
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1H Detection in combination with fast MAS
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 Preparation of Vanadium Oxide Catalyst through SOMC approach
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1H Detection in combination with fast MAS

?

Mance*, D.; Comas-Vives, A.; Copéret*, C., J. Phys. Chem. Lett. 2019, 10 (24), 7898–7904.
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 1H-1H DQ-SQ, 700MHz at 50 kHz MAS
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1H Detection in combination with fast MAS

Mance*, D.; Comas-Vives, A.; Copéret*, C., J. Phys. Chem. Lett. 2019, 10 (24), 7898–7904.
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 1H-Detected D-HMQC, 700MHz at 50 kHz MAS

 Approx. 1 day per spectra
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1H Detection in combination with fast MAS
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1H Detection in combination with fast MAS

Mance*, D.; Comas-Vives, A.; Copéret*, C., J. Phys. Chem. Lett. 2019, 10 (24), 7898–7904.
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 1H-1H RFDR, 700MHz at 50 kHz MAS
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1H Detection in combination with fast MAS

0.5 ms RFDR recoupling

5.0 ms RFDR recoupling

Mance*, D.; Comas-Vives, A.; Copéret*, C., J. Phys. Chem. Lett. 2019, 10 (24), 7898–7904.
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 1H-1H RFDR, 700MHz at 50 kHz MAS

 Validating assignments by Computational Chemistry/NMR calculations
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1H Detection in combination with fast MAS

0.5 ms RFDR recoupling

5.0 ms RFDR recoupling

Mance*, D.; Comas-Vives, A.; Copéret*, C., J. Phys. Chem. Lett. 2019, 10 (24), 7898–7904.
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 Proposed grafting mechanism
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1H Detection in combination with fast MAS

Mance*, D.; Comas-Vives, A.; Copéret*, C., J. Phys. Chem. Lett. 2019, 10 (24), 7898–7904.
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 Sensitivity enhanced methods are an effective method for characterization of 

Catalysts

 NMR provides us a unique tool in correlating NMR parameters with catalytic 

performance 

 The small quantities required make isotope enrichment more practical
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 Sensitivity enhanced methods are an effective method for characterization of 

Catalysts

 NMR provides us a unique tool in correlating NMR parameters with catalytic 

performance 

 The small quantities required make isotope enrichment more practical

Outlook:

 Development of more dedicated experiments

 Focus on characterizing Catalysts pre- and post- reaction in order to understand  

reaction-mechanism’s, deactivation mechanism, etc.  
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Summary
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