

Michal Simon

XRootD — Releases, Status &
Planning 2019

&S XRootD

4.9.0 review

- Currently release candidate 4 is under testing

- Release Notes are available at:
https://github.com/xrootd/xrootd/blob/stable-4.9.x/docs/ReleaseNotes.txt

- Big release that accumulated lots of new features both
on client and server side

4.9.0 review

Client: redirect trace back:

export XRD_LOGLEVEL=Debug
xrdfs localhost stat /data/file.dat

[Debug][XRootD] Redirect trace-back:
[Debug][XRootD] 0. Redirected from
[Debug][XRootD] 1. Redirected from
[Debug][XRootD] 2. Redirected from
[Debug][XRootD] 3. Redirected from

: root://llocalhost: 1094/ to: root://172.18.0.3:1094/

- root://172.18.0.3:1094/ to: root://172.18.0.4:1094/
- root://172.18.0.4:1094/ to: root://172.18.0.3:1094/
- root://172.18.0.3:1094/ to: root://172.18.0.5:1094/

4.9.0 review

Client modern declarative API.

C++11 friendly

Chaining of asynchronous requests (significantly
reduces the amount of boilerplate code)

Standard response handlers: functions, functor,
lambdas, std::futures, std::packaged task

Utilities to execute pipelines in parallel and forward
values within a pipeline

4.9.0 review

Client modern declarative API, example:

File f;
std :: future<ChunkInfo> resp;

— 2 b2 =

5 // open, read from and close the file

6 Pipeline p = Open(file ,url,OpenFlags:: Read)
7 | Read(file ,offset ,size ,buffer) >> resp
S | Close(file);

10 auto status = WaitFor(p);

4.9.0 review

Client modern declarative API, example:

auto &&ol = Open(filel ,urll ,OpenFlags
auto &&o02 = Open(file2 ,url2 ,OpenFlags
auto &&o2 = Open(file2 ,url2 ,OpenFlags

// open 3 files in parallel
Pipeline p = Parallel(ol,02,03);

auto status = WaitFor(p);

:: Read)
:: Read)
:: Read)

4.9.0 review

Third-party-copy with delegation

xrdcp --tpc delegate only
If destination supports delegation there is no need to set
up a randezvous between source and destination

If server does not support delegation we fall back to the
standard TPC algorithm

4.9.0 review

Rendezvous TPC vs TPC with delegation

pull data :,.; pull data:;

VS

PC RDV TPC RDV

4.9.0 review

Other client enhancements:

Protocol level plug-in (e.g. davix based HTTP plug-in)
State redirections (e.g. on read, on write etc.)
An APl to force disconnect

writev request
Client documentation

lew

0 revi

9

Client documentation (timeouts):

A

LoadBalancer TTL

L

| -
]
>
—
«]
(p]
[1v]
=
[1v]
- 8
[
e
v
)]
©
©
O
+l|ll|ll
AT UdoTyyy T T
m; resp ll'
n I||||||I|
a -
=
*Illlllllllllll
_\mmmulllulv
Allllull-ll
1030)0ud gy ==

KXR_redirect g

-

1030Joud ™ yyy T T -

Client

>

Stream T/O

Connection Window

Stream T/O

Connection Window

Request T/O

Plans: 5.0.0

Planned for end of Q2 / beginning of Q3 2019

Major release: an opportunity to review ABI and protocol
constraints

Encryption

Extended attributes (already available in xrdR5
branch)

5.0.0: encryption

Under development in xrdtls branch

Requires ABI changes on the server side (reason for
5.0.0)
Like HTTPS uses Transport Layer Security
standard and non-controversial,
iIndependent from authentication method
It is a prerequisite to support security tokens in xroot
protocol

5.0.0: encryption

Implementation is based on OpenSSL asynchronous
APl and an event-loop

- TLS hand-shake is carried out automatically,

however it might require reissuing a read operation
on write event and vice versa a write operation on

read event [\
OnRd()

rd evt \> /\
wrt evt OnWrt()

Revert on HS?
wrt evt

Event Queue

rd evt Event Loop

5.0.0: encryption

Design details:

In order to simplify operations encrypted and
unencrypted traffic uses the same port
Encryption might be enforced by:

user by choosing xroots/roots protocol,

server by setting wantTLS flag in protocol response
For performance reasons might be switch only after
authentication
Possibility to encrypt only headers and transfer data
unencrypted (a better alternative for request signing)

5.0.0: encryption

Three possibilities:

go s
o2 . |
110101010001111011011 8 a % L 11000 IO
e~ e e = ey
2 "110101010001111011011 S & © 100 194011
@© o O :
T O T 5 : c S
110101010001111011011 110101010001111011011
- 2 C o o Q2
C O 110101010001111011011 @© 5 TONDeSenTamDt €5 T10101010001111011011
© > 110101010001111011071 £ 3 wiowisgorie ® 110101010001111011011
& O TT0701010007111011071 U = TS0 T I0MD1 O c 7101070100011110110717
(U C . q) O . : O
. - O . © .
()] + ()]
9 (- . N ()] . > e .
Hh D 110101010001111011011; S,) IWACWEE0TT 2 110101010001111011011;
S, ¢ 1101010100071111011071 S S TR0~ 1am0 > ©c 9 710101010001111011071
C & £ o ‘= (@©
= = o o
e
a on

Plans 5.x.x

5.X.X series (post R5 top priorities)

Client/Server:
Bundled requests
Recursive delete, extended stat, delete on close
Partial response handling (streaming copy, Is)
New TPC: TPC authentication, kXR_getfile / kXR_putfile

Plans 5.x.x

5.X.X series (nice to have)

Client:
- Extended ZIP support (append, compression)
Extending testing infrastructure: mock event-loop
Modernize code base (c++11)
RDMA support (XCache for HPC use case)
Native dynamic source selection

Packaging:
Docker, cmake/pkg-config module

Summary

4.9.0 — soon (TPC delegation, force disconnect, redirect
traceback, ...)

4.10.0 — iIf need be

5.0.0 — encryption, extended attributes

5.0.1 — it would be nice to fit one more feature release
Into 2019 (especially request bundling)

Questions?

