

Eleni Vryonodou, Richard Ruiz, Cen Zhang And O. Mattelaer

Avoid internet!

- We are many on the room.
 - ⇒ External network is bounded to be slow
- Setup Madgraph to use the local network
 - export MG5aMC_WWW="http://192.168.1.133:8000"
 - → This requires version 2.6.5
- Need to download MG5aMC
 - → http://192.168.1.133:8000/MG5
- For PDF:
 - → http://192.168.1.133:8000/PDF

Ex. I: Install MadGraph 5!

- http://192.168.1.133:8000/MG5/
- untar it (tar -xzpvf MG5_XXX.tgz)
- launch it (\$./bin/mg5_amc)
- learn it!
 - → Type tutorial and follow instructions
- install external package
 - → install pythia8
 - → install MadAnalysis5
- Be sure that you have run export cmd in that shell
 - export MG5aMC_WWW="http://192.168.1.133:8000"

Where to find help (after the school)?

- Type tutorial
- Use the command "help" / "help XXX"
 - "help" tell you the next command that you need to do.
- Launchpad:
 - https://answers.launchpad.net/madgraph5
 - → FAQ: https://answers.launchpad.net/madgraph5/+faqs

Ex. II: Order

Goal • What's the default choice for QED/QCD order

Learn • What's the difference between

 Compute the cross-section for each of those and check the diagram

Check

 Generate VBF process (two jet + two W in final state) only the diagram!

 check that you have the QED diagram that you want:

Solution I: Syntax

- What's the meaning of the order QED/QCD
 - → By default MG5 takes the lowest order in QED!

INFO: Trying coupling order WEIGHTED<=2: WEIGTHED IS 2*QED+QCD

- \rightarrow pp > t t~ IS the same as pp > t t~ QED=0
- → p p > t t~ QED<=2 has additional diagrams (photon/z exchange)</p>

$$p p > t t \sim$$
Cross section (pb)
$$\frac{555 \pm 0.84}{}$$

No significant QED contribution

Solution I Syntax

- generate p p > w+ w- j j
 - → 76 processes
 - → 1432 diagrams
 - None of them are VBF

- generate p p > w+ w- j j QED ≤ 2
 - → 76 processes
 - → 1432 diagrams
 - None of them are VBF

- generate p p > w+ w- jj QED <= 4
 - → 76 processes
 - → 5332 diagrams
 - → VBF present! + those not VBF

- generate p p > w+ w- j j QCD=0
 - → 60 processes
 - → 3900 diagrams
 - → VBF present!

- generate p p > w + w j j QCD <= 2
 - → 76 processes
 - → 5332 diagrams

- generate p p > w+ w- j j QCD \leq =4
 - → 76 processes
 - → 5332 diagrams

Ex III: What are those cards?

- Read the Cards and identify what they do
 - param_card
 - → run_card:
- To see such cards run:
 - → Generate p p > t t~
 - Output
 - → Launch
 - ◆ Type enter to the first question
 - Now you can type I or 2 to see the files

Exercise III: Cards Meaning

- How do you change
 - → top mass
 - → top width
 - → W mass
 - beam energy
 - pt cut on the lepton

Ex III: What are those cards? (Solution)

- Read the Cards and identify what they do
 - param_card: model parameters
 - Note aS is not typically not read from the param_card but from the PDF set chosen (if any)
 - run_card: beam/run parameters and cuts
 - https://answers.launchpad.net/madgraph5/+faq/2014

Exercise III: Cards Meaning (Solution)

- How do you change
 - → top mass
 - ◆ Set mt 180 # or edit param card
 - → top width
 - Set wt 2.1 # or edit param_card
 - → W mass
 - ◆ Set m**Z** 80 # or change GF/aEW !! MW is not free!
 - beam energy
 - set ebeam 7000 # or change run_card
 - pt cut on the lepton
 - set ptl 20 # or change run_card

Ex. IV: Syntax

 Generate the cross-section and the distribution (invariant mass) for

```
    → pp > e+e-
    → pp > z,z > e+e-
    → pp > z > e+e-
    → pp > e+e-$z
    → pp > e+e-/z
```

Hint: To plot automatically distributions: mg5> install MadAnalysis5

 Use the invariant mass distribution to determine the meaning of each syntax.

Z Peak

$$p p > e + e - /z$$

 $M [e+e-] (GeV/c^2)$

Z- onshell veto

 $|M^* - M| < BW_{cut} * \Gamma$

- The Physical distribution is (very close to) exact sum of the two other one.
- The "\$" forbids the Z to be onshell but the photon invariant mass can be at MZ (i.e. on shell substraction).
- The "/" is to be avoid if possible since this leads to violation of gauge invariance.

WARNING

- NEXT SLIDE is generated with bw_cut =5
- This is TOO SMALL to have a physical meaning (15 the default value used in previous plot is better)
- This was done to illustrate more in detail how the "\$" syntax works.

See previous slide warning

$$p p > e + e - /Z$$

adding
$$p p > e + e -$$
\$ $\sum_{\text{(blue curve)}}$

- Z onshell veto
- In veto area only photon contribution
- area sensitive to z-peak
- very off-shell Z, the difference between the curve is due to interference which are need to be KEPT in simulation.

5 times width area

15 times width area

>15 times width area

The "\$" can be use to split the sample in BG/SG area

Syntax Like

```
    → p p > z > e+ e-
    → p p > e+ e- / z (forbids any z)
    → p p > e+ e- $$ z (forbids any z in s-channel)
```

- ARE NOT GAUGE INVARIANT!
- forgets diagram interference.
- can provides un-physical distributions.

Avoid Those as much as possible!

check physical meaning and gauge/Lorentz invariance if you do.

- Syntax like
 - p p > z, z > e+ e- (on-shell z decaying)
 - p p > e+ e- \$ z
 (forbids s-channel z to be on-shell)
- Are linked to cut $|M^* M| < BW_{cut} * \Gamma$
- Are more safer to use
- Prefer those syntax to the previous slides one

Exercise V

- Generate top pair production at LO,
- Do the fully leptonic decay of the top pair
- Shower event with pythia8
- Plot the pt distribution of the first jet
- How to improve the simulation
 - Of the cross-section
 - Of the pt of the first/second jet

•

Two methods for the decay

- Generate p p > t t~, (t > w+ b, w+ > e+ ve), (t~ > w- b~, w-> e-ve~)
- output
- launch
 - → Ask for Pythia8 and MA5 (rest keep on OFF)
 - ⇒ set mpi OFF #This is for speed issue for the tuto
- Generate p p > t t~
- Output; Launch
 - Ask for MadSpin and Pythia8 and MA5
 - set mpi OFF # This is for speed issue for the tuto
 - \rightarrow decay t > w+ b, w+ > e+ ve
 - → decay t~ > w- b~, w- > e- ve~

Two methods for the decay

- Generate p p > t t~, (t > w+ b, w+ > e+ ve), (t~ > w- b~, w-> e- ve~)
- Full phase-space integration
 - Does not rely on the Branching ratio
 - Rely on the full width
 - cut-off to avoid be too much off-shell
- Generate p p > t t~ + Madspin
 - → Rely on the Branching ratio
 - → Keep the full spin-correlation
 - Keep off-shell effects: cut-off to avoid be too much off-shell

Improve Precision

- cross-section
 - → Need to go to NLO
 - No decay chain syntax (only MadSpin option)
 - generate p p > t t~ [QCD]
 - → To generate events we need to know which Parton-Shower, you will use!!
 - Events generated for that specific PS
 - Using another will break NLO accuracy
 - → MadSpin decay is based on LO and NWA.

Improve Precision

- Pt of the first jet
 - → Add the jet at LO:
 - generate p p > t t~ j
 - Valid for hard jet only!
 - → Going to NLO: "generate p p > t t~ [QCD]"
 - ♦ As accurate at p p > t t~ j
 - But if you do "generate p p > t t~ j [QCD]"

Improve Precision

- Pt of the second jet
 - Need matching/merging method
 - generate p p > t t~
 - ♦ add process p p > t t~ j
 - ♦ add process p p > t t~ j j
 - → Use MLM or CKKW-L scheme (or any variation)
 - → You can also use matching/merging at NLO
 - FxFx or UNLOPS
 - generate p p > t t~ [QCD]
 - add process p p > t t~ j [QCD]
 - add process p p > t t~ j j [QCD]

tt@LO

ttj@LO

PT distribution (MLM 0+1j)

tt@NLO

ttj

Eleni Vryonodou, Cen Zhang, Richard Ruiz And O. Mattelaer

BSM

Exercise I: Restrict Model

- Run the "export command" in your shell!
- Import model EWDim6
 - → This downloads it on disk. (and change model to thato one for the diagram generation)
 - → This model contains 8 dimension operator
- We want to RESTRICT the model to only keep one (Owww)
- Such that Feynman diagram corresponding to other operator are NOT generated
 - Makes more optimal code!

Exercise I: Restrict Model

- Go to models/EWdim6 directory
- Run the script
 - Python write_param_card.py
- cp param_card.dat restrict_owww.dat
 - The owww part can be changed to ANY string you want [but default and full].
- Edit that file
 - → Put the c mass and b mass to zero
 - → Put all the dim6 operator at 0 but CWWWL2
 - → Put CWWWL2 to 9.999999e-I
- Go back to MG5_aMC
 - → Import model EWdim6-owww

Restrict Model

When importing the model with the flag

```
MG5_aMC>import model EWdim6-owww
INFO: model loaded from PYTHONPATH: /Users/omattelaer/Desktop/UFOMODEL/EWdim6
INFO: Restrict model EWdim6 with file ../../../Desktop/UFOMODEL/EWdim6/restrict_owww.dat .
INFO: Run "set stdout_level DEBUG" before import for more information.
INFO: Change particles name to pass to MG5 convention

Pass the definition of 'j' and 'p' to 5 flavour scheme.

Kept definitions of multiparticles l- / vl / l+ / vl~ unchanged

Defined multiparticle all = g u c d s b u~ c~ d~ s~ b~ a ve vm vt e- ve~ vm~ vt~ e+ t t~ z

MG5_aMC>
```

- → MG5 mode pass to 5 flavour
- Less Feynman diagram generated

- Less parameter in the param_card
 - ♦ No b/c mass option
 - One Dim6 operator
 - No CKM block

Restrict Model

- What's happening
 - 1. All coupling are evaluated for that param_card
 - 2. All vertex associated to zero coupling (exactly or very small) are **removed** from the model
 - 3. All zero/one value of the param_card are frozen to such value (use 0.000001e-99,9.99999e-1 to avoid that)
 - 4. If two parameters are equal (or opposite) in the same block
 - Remove one of the two parameters
 - ◆ Freeze the second one accordingly
 - 5. If a file default_XXX.dat exists use that one as default param_card. Otherwise use the restrict_XXX.dat itself
 - can be used for benchmark
 - 6. restrict_default.dat is automatically loaded by MG5aMC
 - Use import model EWdim6-full to bypass it

Exercise II: Validate Model

- Validate a Model/Process is always nice !!
 - → You will sound like a MG5 expert
- Import model EW-dim6
- check p p > z h a

```
Lorentz invariance results:
                 Min element
                                   Max element
                                                      Relative diff.
Process
                                                                        Result
qq>zha
                 3.0245789272e-01 3.0245789272e-01
                                                     0.0000000000e+00
                                                                        Passed
u u^{\sim} > z h a
                                                      2.0693229620e-15
                 4.1915242516e-03
                                  4.1915242516e-03
                                                                        Passed
d d\sim > z h a
                                                     2.6200262928e-15 Passed
                 1.2414404109e-03 1.2414404109e-03
Summary: 3/3 passed, 0/3 failed
Not checked processes: c c_{\sim} > z h a, s s_{\sim} > z h a
Gauge results:
Process
                 matrix
                                    BRS
                                                      ratio
                                                                        Result
                 3.4921781373e-01 4.9684750757e-42 1.4227438809e-41 Passed
qq>zha
                 4.9543423043e-03 8.8574527892e-34 1.7878160703e-31 Passed
u u^{\sim} > z h a
d d\sim > z h a
                 2.8216312492e-03 2.0405124807e-34 7.2316766455e-32 Passed
Summary: 3/3 passed, 0/3 failed
Process permutation results:
                                   Max element
                                                      Relative diff.
Process
                 Min element
                                                                        Result
                 3.7207324869e-01 3.7207324869e-01 1.4919414773e-16
qq>zha
                                                                        Passed
u u^{\sim} > z h a
                 1.2564293427e-02 1.2564293427e-02 2.7613546055e-16
                                                                        Passed
d d\sim > z h a
                 1.3180098875e-02 1.3180098875e-02 1.3161687879e-16
                                                                        Passed
Summary: 3/3 passed, 0/3 failed
```

- Lorentz
 - Very sensitive to gauge
- Gauge
 - Epsilon replaced
- MG5 consistency
 - Change num method

Exercise III: Width

- Compute $p p > w+ w- b b\sim$
 - → Change the top quark width
 - → How the cross-section changes (and why)
- compute p p > t t~, t > w+ b, t~ > w- b~
 - → Change the top quark width
 - → How the cross-section changes (and why)
- compute p p > t t~ + Madspin decay
 - Change the top quark width (but keep BR to I)
 - → How the cross-section changes (and why)

Exercise III: Width

- Compute p p > w+ w- b b~
 - → Cross-section as I/ Gamma
- compute p p > t t~, t > w+ b, t~ > w- b~
 - → Cross-section as I/Gamma
- compute p p > t t~ + Madspin decay
 - Constant (use the Branching ratio information)
 - ◆ If MadSpin does not re-compute the width
- The width is consider as a free parameter in the computation.
 - Need to be provided correctly for the cross-section/ shape

Exercise III: Width - Part II

- Compare
 - \rightarrow generate p p > w+ j
 - \rightarrow generate p p > w+ j, w+ > e+ ve
- Compare
 - → generate p p > e+ ve j
 - \rightarrow generate p p > w+ j, w+ > e+ ve
- Redo the comparison when modifying the run_card parameter "cut_decays"

Width Solution

Goal • understanding decay-chain handling

generate p p > w+ j output; launch

generate p p > w+ j, w+ > e+ ve output; launch

generate p p > e+ ve j output; launch

Wrong width	Correct width	+cut_decays=T
21437 pb * BR 2304 pb	21437 pb * BR 2304 pb	21437 pb * BR 2304 pb
32514 pb	2329 pb	1588 pb
33095 pb	1606 pb	1606 pb

Remember

- We do not use the BR information. The crosssection depends of the total width
- particle from on shell decay do not have cut by default

Exercise III: Width - Part II

- Compare
 - \rightarrow generate p p > w+ j
 - \rightarrow generate p p > w+ j, w+ > e+ ve
- Compare
 - → generate p p > e+ ve j
 - \rightarrow generate p p > w+ j, w+ > e+ ve

 The community fight on the default of that parameter! Some believe that the first comparison should be the one working and some the second

Width: Trick

- Width are consider as free parameter
 - Not really True
- We can compute them automatically !!
 - "set wt Auto" # or inside the param_card
 - → Tree-Level computation
 - Not valid for the Higgs (but for heft model)
 - → Include 3 body decay (bypass them if not relevant)
- Check it for the top/W/Z
- 2 body computation can be done analytically
 - Fasten the computation (need recent UFO model)

Exercise IV: Interference

Exercise

- Use your EWDIM6 model
- Compute cross-section without the square part

Exercise V: Automation

- 2 Goals:
 - → How to do a parameter scan
 - → How to avoid the cli (command line interface)

Parameter scan

Parameter scan:

- compute the cross-section for a couple of mass generate p p > go go
- for that you can enter for the go mass:

```
set mgo scan:[100,200, 300]
```

set mgo scan:[100*i for i in range(1,4)] Any python syntax is valid!!

Width -> no problem

set mgo scan:[100,200, 300]

set wgo Auto

Recomputed for each benchmark

Output

One additional output file scan_XX.dat

#run_name	mass#1000021	cross
run_01	5.000000e+01	1.004913e+06
run_02	1.000000e+02	5.471439e+04
run_03	1.500000e+02	8.679740e+03

More than one parameter

2D scan

No correlation

set mgo scan:[100,200, 300]

set mneu1 scan:[100*i for i in range(1,4)]

1D scan

No correlation

set mgo scan1:[100,200, 300]

set mneu1 scan1:[100*i for i in range(1,4)]

EFT operator scan

set dim6 1 scan1:[1 if i==0 else 0 for i in range(3)]

set dim6 2 scan1:[1 if i==1 else 0 for i in range(3)]

set dim6 3 scan1:[1 if i==2 else 0 for i in range(3)]

Automation

scripting

- write in a file (./MYFILE)
- run it as ./bin/mg5_aMC ./MYFILE

import model EWdim6
generate p p > z h
ouput TUTO
launch
set nevents 5000
set LHC 13
launch
set LHC 14

Comment on scripting

- Do not use ./bin/mg5_aMC < ./MYFILE
- If an answer to a question is not present: Default is taken automatically
- EVERYTHING that you type can be put in the entry file

EFT related trick!

- If you specify one coupling order
 - → Generate p p > t t~ QED<=2</p>
 - → All other coupling will be assume to be infinite
 - ◆ Some model restrict EFT operator to one
 - So their maximum will be one
- This can be changed with
 - set default_unset_couplings 0
 - (before the generate command)
- Useful for EFT model when they have plenty of coupling order