MG5aMC tutorial

Eleni Vryonodou, Richard Ruiz, Cen Zhang And O. Mattelaer

Avoid internet!

- We are many on the room.
- External network is bounded to be slow
- Setup Madgraph to use the local network
- export MG5aMC_WWW="http://I92.168.I.I33:8000"
\Rightarrow This requires version 2.6.5
- Need to download MG5aMC
\Rightarrow http://I92.168.I.I33:8000/MG5
- For PDF:
- http://I92.168.I.|33:8000/PDF

Ex. I: Install MadGraph 5!

- http://I92.168.I.|33:8000/MG5/
- untar it (tar -xzpvf MG5_XXX.tgz)
- launch it (\$./bin/mg5 amc)
- learn it!
- Type tutorial and follow instructions
- install external package
- install pythia8
- install MadAnalysis5
- Be sure that you have run export cmd in that shell
- export MG5aMC_WWW="http://I92.168.I.I33:8000"

Where to find help (after the school)?

- Type tutorial
- Use the command "help" / "help XXX"
- "help" tell you the next command that you need to do.
- Launchpad:
- https://answers.launchpad.net/madgraph5
- FAQ: https://answers.launchpad.net/madgraph5/+faqs

Ex. II : Order

Goal - What's the default choice for QED/QCD order

Learn • What's the difference between
$\Rightarrow P p>t \sim$
$\Rightarrow P p>t \mathrm{t} \sim \mathrm{QED}=0$

$$
\Rightarrow \mathrm{pp}>\mathrm{t} \mathrm{t} \sim \mathrm{QED}<=2
$$

- Compute the cross-section for each of those and check the diagram
- Generate VBF process (two jet + two W in final state) only the diagram!
- check that you have the QED diagram that you want:

Solution I: Syntax

- What's the meaning of the order QED/QCD
- By default MG5 takes the lowest order in QED!

INFO: Trying coupling order WEIGHTED<=2: WEIGTHED IS 2*QED+QCD
$\Rightarrow p p>t \mathrm{t} \sim \mathrm{IS}$ the same as $\mathrm{p} p>\mathrm{t} \sim$ QED=0
$\Rightarrow P P>t \mathrm{t} \sim \mathrm{QED}<=2$ has additional diagrams (photon/z exchange)

$$
p \mathrm{p}>\mathrm{t} \mathrm{t} \sim
$$

$$
\begin{gathered}
P \mathrm{P}>\mathrm{t} \mathrm{t} \sim \mathrm{QED}=2 \\
\hline \text { Cross section (pb) } \\
\hline \underline{555.8 \pm 0.91} \\
\hline
\end{gathered}
$$

No significant QED contribution

Solution I Syntax

- generate p p > w $+w-j j$
- 76 processes
- 1432 diagrams
- generate p p > w+ w- j j QED $<=2$
- 76 processes
- 1432 diagrams
- None of them are VBF
generate p p > w $+w-j$ j QED $<=4$
- 76 processes
- 5332 diagrams
\Rightarrow VBF present! + those not VBF
- generate p p > w+ w- j j QCD=0
- 60 processes
- 3900 diagrams
- VBF present!
generate p p > w $+w-$ j j QCD $<=2$
- 76 processes
- 5332 diagrams
- generate p p > w+ w- jj QCD $<=4$
- 76 processes

Ex III:What are those cards?

- Read the Cards and identify what they do
- param_card
\Rightarrow run_card:
- To see such cards run:
\Rightarrow Generate p p > t t~
- Output
\Rightarrow Launch
- Type enter to the first question
- Now you can type I or 2 to see the files

Exercise III: Cards Meaning

- How do you change
\Rightarrow top mass
\Rightarrow top width
\Rightarrow W mass
\Rightarrow beam energy
\Rightarrow pt cut on the lepton

Ex III:What are those cards? (Solution)

- Read the Cards and identify what they do
- param_card: model parameters
- Note aS is not typically not read from the param_card but from the PDF set chosen (if any)
\Rightarrow run_card: beam/run parameters and cuts
- https://answers.launchpad.net/madgraph5/+faq/2014

Exercise III: Cards Meaning (Solution)

- How do you change
\Rightarrow top mass
- Set mt 180 \# or edit param_card
\Rightarrow top width
- Set wt 2.I \# or edit param_card
$\Rightarrow W$ mass
- Set mZ 80 \# or change GF/aEW !! MW is not free!
\Rightarrow beam energy
- set ebeam 7000 \# or change run_card
\Rightarrow pt cut on the lepton
- set ptl 20 \# or change run_card

Ex. IV: Syntax

- Generate the cross-section and the distribution (invariant mass) for
- pp>e+e-
- pp>z,z>e+e-
- $p p>z>e^{+}$e-
- pp>e+e-\$z
- pp>e+e-/z

Hint :To plot automatically distributions: mg5> install MadAnalysis5

- Use the invariant mass distribution to determine the meaning of each syntax.

P p > e+e-/z
(8 diagrams) NO Z Peak

No ${ }^{2}$
Z Peak

No z/a interference
Wrong tail P P > z , z > e+e(8 diagrams)

Z- onshell veto

Onshell cut: BW_cut

$$
\left|M^{*}-M\right|<B W_{c u t} * \Gamma
$$

- The Physical distribution is (very close to) exact sum of the two other one.
- The " $\$$ " forbids the Z to be onshell but the photon invariant mass can be at MZ (i.e. on shell substraction).
- The " $/$ " is to be avoid if possible since this leads to violation of gauge invariance.

WARNING

- NEXT SLIDE is generated with bw_cut $=5$
- This is TOO SMALL to have a physical meaning (I5 the default value used in previous plot is better)
- This was done to illustrate more in detail how the " $\$$ " syntax works.

See previous slide warning
$p p>e+e-/ Z$
adding P P > e+e- \$ Z

5 times width area
I5 times width area
>15 times width area
The "\$" can be use to split the sample in BG/SG area

- Syntax Like
\Rightarrow P P > z > e+ e- (ask one S-channel z)
$\Rightarrow P p>e+e-/ z$
(forbids any z)
$\Rightarrow p p>e+e-\$ \$ z$
(forbids any z in s-channel)
- ARE NOT GAUGE INVARIANT!
- forgets diagram interference.
- can provides un-physical distributions.

Avoid Those as much as possible!

check physical meaning and gauge/Lorentz invariance if you do.

- Syntax like
- $P P^{>} z, z>e+e-$ (on-shell z decaying)
- P P $>\mathrm{e}+\mathrm{e}-\$ \mathrm{z}$ (forbids s-channel z to be on-shell)
- Are linked to cut $\left|M^{*}-M\right|<B W_{c u t} * \Gamma$
- Are more safer to use
- Prefer those syntax to the previous slides one

ExerciseV

- Generate top pair production at LO,
- Do the fully leptonic decay of the top pair
- Shower event with pythia8
- Plot the pt distribution of the first jet
- How to improve the simulation
- Of the cross-section
- Of the pt of the first/second jet

Two methods for the decay

- Generate p p > t t~, ($\mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}),(\mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim, \mathrm{w}->\mathrm{e}-$ ve~)
- output
- launch
- Ask for Pythia8 and MA5 (rest keep on OFF)
\Rightarrow set mpi OFF \#This is for speed issue for the tuto
- Generate p p>t t~
- Output; Launch
\Rightarrow Ask for MadSpin and Pythia8 and MA5
\Rightarrow set mpi OFF \#This is for speed issue for the tuto
\Rightarrow decay $\mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}$
\Rightarrow decay $\mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim, \mathrm{w}->\mathrm{e}-\mathrm{ve} \sim$

Two methods for the decay

- Generate p p > t t~, (t > w+b, w+ > e+ ve), (t~>w-b~, w-> eve~)
- Full phase-space integration
\Rightarrow Does not rely on the Branching ratio
\Rightarrow Rely on the full width
\Rightarrow cut-off to avoid be too much off-shell
- Generate p p > t t~ + Madspin
- Rely on the Branching ratio
\Rightarrow Keep the full spin-correlation
- Keep off-shell effects: cut-off to avoid be too much off-shell

Improve Precision

- cross-section
\Rightarrow Need to go to NLO
- No decay chain syntax (only MadSpin option)
* generate pp>t $\mathrm{t} \sim$ [QCD]
\Rightarrow To generate events we need to know which PartonShower, you will use!!
- Events generated for that specific PS
- Using another will break NLO accuracy
\Rightarrow MadSpin decay is based on LO and NWA.

Improve Precision

- Pt of the first jet
\Rightarrow Add the jet at LO:
- generate P P > t t~ j
- Valid for hard jet only!
\Rightarrow Going to NLO: "generate p p > t t~ [QCD]"
\uparrow As accurate at p p>t t~j
- But if you do "generate pp>t $\mathrm{t} \sim \mathrm{j}$ [QCD]"

Improve Precision

- Pt of the second jet
- Need matching/merging method
- generate pp>t~
* add process p p $>\mathrm{tt} \mathrm{j}$
- add process pp>tt~jj
- Use MLM or CKKW-L scheme (or any variation)
\Rightarrow You can also use matching/merging at NLO
- FxFx or UNLOPS
- generate p p>t t~ [QCD]
- add process p p>t $\mathrm{t} \sim \mathrm{j}$ [QCD]
- add process p p >tt~ji [QCD]

tt@LO

ttj@LO

PT distribution (MLM 0+lj)

tt@NLO

ttj

MG5aMC tutorial II BSM

Eleni Vryonodou, Cen Zhang, Richard Ruiz And O. Mattelaer

Exercise I: Restrict Model

- Run the "export command" in your shell!
- Import model EWDim6
\Rightarrow This downloads it on disk. (and change model to thato one for the diagram generation)
- This model contains 8 dimension operator
- We want to RESTRICT the model to only keep one (Owww)
- Such that Feynman diagram corresponding to other operator are NOT generated
- Makes more optimal code!

Exercise I: Restrict Model

- Go to models/EWdim6 directory
- Run the script
- Python write_param_card.py
- cp param_card.dat restrict_owww.dat
\Rightarrow The owww part can be changed to ANY string you want [but default and full].
- Edit that file
\Rightarrow Put the c mass and b mass to zero
- Put all the dim6 operator at 0 but CWWWL2
- Put CWWWL2 to 9.999999e-I
- Go back to MG5_aMC
= Import model EWdim6-owww

Restrict Model

- When importing the model with the flag

MG5_aMC>import model EWdim6-owww
INFO: model loaded from PYTHONPATH: /Users/omattelaer/Desktop/UFOMODEL/EWdim6
INFO: Restrict model EWdim6 with file ../../../Desktop/UFOMODEL/EWdim6/restrict_owww.dat
INFO: Run "set stdout_level DEBUG" before import for more information.
INFO: Change particles name to pass to MG5 convention
Pass the definition of ' j ' and ' p ' to 5 flavour scheme.
Kept definitions of multiparticles l- / vl / l+ / vl~ unchanged
Defined multiparticle $a l l=g u c d s b u \sim c \sim d \sim s \sim b \sim a$ ve vm vt e-ve vm vir vt~ e+t t~ z MG5_aMC>
\Rightarrow MG5 mode pass to 5 flavour
\Rightarrow Less Feynman diagram generated
\#
\#\# INFORMATION FOR DIMG
\# Block dim6
$11.000000 \mathrm{e}+00$ \# CWWWL2
\# \#\# INFORMATION FOR MASS
\#
Block mass
$61.720000 \mathrm{e}+02$ \# MT
13 1.056600e-01 \# MM
15 1.777000e+00 \# MTA
23 9.118760e+01 \# MZ
25 1.250000e+02 \# set of param :1*MH, 1*MP

Restrict Model

- What's happening

1. All coupling are evaluated for that param_card
2. All vertex associated to zero coupling (exactly or very small) are removed from the model
3. All zero/one value of the param_card are frozen to such value (use 0.00000 le- $99,9.999999 \mathrm{e}$-I to avoid that)
4. If two parameters are equal (or opposite) in the same block

- Remove one of the two parameters
\downarrow Freeze the second one accordingly

5. If a file default_ $X X X$.dat exists use that one as default param_card. Otherwise use the restrict_XXX.dat itself

- can be used for benchmark

6. restrict_default.dat is automatically loaded by MG5aMC

- Use import model EWdim6-full to bypass it

Exercise II: Validate Model

- Validate a Model/Process is always nice !!
- You will sound like a MG5 expert
- Import model EW-dim6
- check P p > zha

Lorentz invariance results:			
Process Min element	Max element	Relative diff.	Result
$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{h} \mathrm{a} \mathrm{3.0245789272e-01}$	$3.0245789272 \mathrm{e}-01$	0.0000000000e+00	Passed
u u~ > z h a 4.1915242516e-03	4.1915242516e-03	$2.0693229620 \mathrm{e}-15$	Passed
d d~ > z h a 1.2414404109e-03	$1.2414404109 \mathrm{e}-03$	$2.6200262928 \mathrm{e}-15$	Passed
Summary: 3/3 passed, 0/3 failed			
Not checked processes: c c~ > z h a, s s~ > z ha			
Process matrix	BRS	ratio	Result
$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{h} \mathrm{a} \mathrm{3.4921781373e-01}$	4.9684750757e-42	1.4227438809e-41	Passed
u u~ > z h a 4.9543423043e-03	8.8574527892e-34	1.7878160703e-31	Passed
d d~ > z h a 2.8216312492e-03	$2.0405124807 e-34$	7.2316766455e-32	Passed
Summary: $3 / 3$ passed, 0/3 failed			
Process permutation results:			
Process Min element	Max element	Relative diff.	Result
$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{h} \mathrm{a} \mathrm{3.7207324869e-01}$	$3.7207324869 \mathrm{e}-01$	1.4919414773e-16	Passed
u u~ > z h a 1.2564293427e-02	1.2564293427e-02	$2.7613546055 \mathrm{e}-16$	Passed
d d~ > z h a 1.3180098875e-02	$1.3180098875 \mathrm{e}-02$	1.3161687879e-16	Passed
Summary: $3 / 3$ passed, 0/3 failed			

Exercise III: Width

- Compute P p > w+ w-b b~
\Rightarrow Change the top quark width
\Rightarrow How the cross-section changes (and why)
- compute P P > $\mathrm{t} \mathrm{t} \sim, \mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim$
\Rightarrow Change the top quark width
- How the cross-section changes (and why)
- compute p p>tt~+Madspin decay
- Change the top quark width (but keep BR to I)
\Rightarrow How the cross-section changes (and why)

Exercise III: Width

- Compute P p > w+ w-b b~
\Rightarrow Cross-section as I/ Gamma
- compute P p > t t~, $\mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim$
- Cross-section as I/Gamma
- compute p p>tt~+Madspin decay
\Rightarrow Constant (use the Branching ratio information)
- If MadSpin does not re-compute the width
- The width is consider as a free parameter in the computation.
\Rightarrow Need to be provided correctly for the cross-section/ shape

Exercise III: Width - Part II

- Compare
\Rightarrow generate P P > w+
\Rightarrow generate P p > $\mathrm{w}^{+} \mathrm{j}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}$
- Compare
\Rightarrow generate P p > e+ ve j
\Rightarrow generate p p > w+ j, w+ > e+ ve
- Redo the comparison when modifying the run_card parameter "cut_decays"

Width Solution

Goal - understanding decay-chain handling

generate p p > w +j
output; launch
generate $\mathrm{p} p>\mathrm{w}+\mathrm{j}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}$ output; launch
generate $p \mathrm{p}>\mathrm{e}+\mathrm{ve} \mathrm{j}$ output; launch

Wrong width	Correct width	+cut_decays=T
$21437 \mathrm{pb} * \mathrm{BR}$ 2304 pb	$21437 \mathrm{pb} * \mathrm{BR}$ 2304 pb	21437 pb *BR 2304 pb
32514 pb	2329 pb	1588 pb
33095 pb	1606 pb	1606 pb

Remember

- We do not use the BR information. The crosssection depends of the total width
- particle from on shell decay do not have cut by default

Exercise III: Width - Part II

- Compare
\Rightarrow generate P P > $\mathrm{w}^{+}{ }^{\mathrm{j}}$
\Rightarrow generate P p > $\mathrm{w}^{+} \mathrm{j}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}$
- Compare
\Rightarrow generate p p > e+ ve j
\Rightarrow generate P p > $\mathrm{w}^{+} \mathrm{j}, \mathrm{w}+>\mathrm{e}^{+}$ve
- The community fight on the default of that parameter! Some believe that the first comparison should be the one working and some the second

Width:Trick

- Width are consider as free parameter
- Not really True
- We can compute them automatically !!
- "set wt Auto" \# or inside the param_card
- Tree-Level computation
- Not valid for the Higgs (but for heft model)
\Rightarrow Include 3 body decay (bypass them if not relevant)
- Check it for the top/W/Z
- 2 body computation can be done analytically
- Fasten the computation (need recent UFO model)

Exercise IV: Interference

Example

Exercise

- Use your EWDIM6 model
- Compute cross-section without the square part

Exercise V:Automation

- 2 Goals:
- How to do a parameter scan
\Rightarrow How to avoid the cli (command line interface)

Parameter scan

Parameter scan:

- compute the cross-section for a couple of mass generate pp>gogo
- for that you can enter for the go mass:
set mgo scan:[100,200, 300]
set mgo scan:[100*i for i in range(1,4)] Any python syntax is valid!!
Width -> no problem
set mgo scan:[100,200, 300]
set wgo Auto Recomputed for each benchmark

Output

- One additional output file scan_XX.dat

run_name	mass\#1000021	cross
run_01	$5.000000 \mathrm{e}+01$	$1.004913 \mathrm{e}+06$
run_02	$1.000000 \mathrm{e}+02$	$5.471439 \mathrm{e}+04$
run_03	$1.500000 \mathrm{e}+02$	$8.679740 \mathrm{e}+03$

More than one parameter

2D scan

- No correlation
set mgo scan:[100,200, 300]
set mneu1 scan:[100*i for i in range(1,4)]

1D scan

- No correlation
set mgo scan1:[100,200, 300]
set mneu1 scan1:[100*i for i in range(1,4)]

EFT operator scan
set dim6 1 scan1:[1 if $i==0$ else 0 for i in range(3)]
set dim6 2 scan1:[1 if $i==1$ else 0 for i in range(3)]
set dim6 3 scan1:[1 if $i==2$ else 0 for i in range(3)]

Automation

scripting

- write in a file (./MYFILE)
- run it as ./bin/mg5_aMC ./MYFILE
import model EWdim6 generate p p $>z h$ ouput TUTO launch

Comment on scripting

- Do not use ./bin/mg5_aMC < ./MYFILE
- If an answer to a question is not present: Default is taken automatically
- EVERYTHING that you type can be put in the entry file

EFT related trick!

- If you specify one coupling order
\Rightarrow Generate p p $>\mathrm{t}$ t~QED<=2
\Rightarrow All other coupling will be assume to be infinite
- Some model restrict EFT operator to one
- So their maximum will be one
- This can be changed with
- set default_unset_couplings 0
- (before the generate command)
- Useful for EFT model when they have plenty of coupling order

