# Positivity constraints on QGC operators

Cen Zhang



Institute of High Energy Physics Chinese Academy of Sciences

> Feb. 15 2019 VBSCan@Ljubljana

SMEFT, Positivity, VBS

# QGC: Quartic Gauge-boson Couplings

What else do we know about them?

$$\begin{split} &O_{S,0} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi] \\ &O_{S,1} = [(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi] \times [(D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi] \\ &O_{S,2} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\nu}\Phi)^{\dagger}D^{\mu}\Phi] \\ &O_{M,0} = \mathrm{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times [(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi] \\ &O_{M,1} = \mathrm{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta}\right] \times [(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi] \\ &O_{M,2} = \left[\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}\right] \times [(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi] \\ &O_{M,3} = \left[\hat{B}_{\mu\nu}\hat{B}^{\nu\beta}\right] \times [(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi] \\ &O_{M,4} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\mu}\Phi\right] \times \hat{B}^{\beta\nu} \\ &O_{M,5} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\nu}\Phi\right] \times \hat{B}^{\beta\mu}(+h.c.) \\ &O_{M,7} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\nu}\Phi\right] \end{split}$$

$$\begin{array}{l} O_{T,0} = \mathrm{Tr} \begin{bmatrix} \hat{W}_{\mu\nu} \, \hat{W}^{\mu\nu} \\ \\ W_{\alpha\nu} \, \hat{W}^{\mu\beta} \end{bmatrix} \times \mathrm{Tr} \begin{bmatrix} \hat{W}_{\alpha\beta} \, \hat{W}^{\alpha\beta} \\ \\ \hat{W}_{\alpha\mu} \, \hat{W}^{\mu\beta} \end{bmatrix} \times \mathrm{Tr} \begin{bmatrix} \hat{W}_{\mu\beta} \, \hat{W}^{\alpha\nu} \\ \\ \hat{W}_{\mu\nu} \, \hat{W}^{\mu\beta} \end{bmatrix} \times \mathrm{Tr} \begin{bmatrix} \hat{W}_{\mu\rho} \, \hat{W}^{\nu\alpha} \\ \\ \hat{W}_{\mu\nu} \, \hat{W}^{\mu\beta} \end{bmatrix} \times \hat{B}_{\alpha\beta} \hat{B}^{\alpha\beta} \\ O_{T,5} = \mathrm{Tr} \begin{bmatrix} \hat{W}_{\mu\nu} \, \hat{W}^{\mu\beta} \\ \\ \hat{W}_{\mu\nu} \, \hat{W}^{\mu\beta} \end{bmatrix} \times \hat{B}_{\mu\beta} \hat{B}^{\alpha\nu} \\ O_{T,7} = \mathrm{Tr} \begin{bmatrix} \hat{W}_{\alpha\mu} \, \hat{W}^{\mu\beta} \\ \\ \hat{W}_{\alpha\mu} \, \hat{W}^{\mu\beta} \end{bmatrix} \times \hat{B}_{\beta\nu} \hat{B}^{\nu\alpha} \\ O_{T,8} = \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \times \hat{B}_{\alpha\beta} \hat{B}^{\alpha\beta} \\ O_{T,9} = \hat{B}_{\alpha\mu} \hat{B}^{\mu\beta} \times \hat{B}_{\beta\nu} \hat{B}^{\nu\alpha} , \end{array}$$



- In a bottom-up approach, we could be "too much" model-independent.
- "Positivity constraints" give us some hints.
  - In particular, the actual BSM parameter space is only ~ 2% of what you naively expect from EFT operators.

#### CMS-PAS-SMP-18-001





э

| Cen Zhang (IHEP) | SMEFT, Positivity, VBS | Feb. 15 | 4 |
|------------------|------------------------|---------|---|
|                  |                        |         |   |

#### CMS-PAS-SMP-18-001 + Positivity





<ロト <回 > < 回 > < 回 > .

э

| Cen Zhang (IHEP) | SMEFT, Positivity, VBS | Feb. 15 | 5 |
|------------------|------------------------|---------|---|
|                  |                        |         |   |

# Outline



Implication



| Cen | Zh | nana ( | ίH | EP) |
|-----|----|--------|----|-----|
|     |    |        |    |     |

토 🖌 🛪 토 🕨

#### What it is

What are "positivity constraints":

• A linear combination of coefs.  $(F_{S,0}, F_{S,1}, F_{S,2}, \cdots)$  must be positive.

$$8a_{3}^{2}b_{3}^{2}t_{W}^{4}(F_{S,0}+F_{S,1}+F_{S,2}) + \left[a_{3}^{2}\left(b_{1}^{2}+b_{2}^{2}\right) + \left(a_{1}^{2}+a_{2}^{2}\right)b_{3}^{2}\right]t_{W}^{2}\left(-t_{W}^{4}F_{M,3}+t_{W}^{2}F_{M,5}-2F_{M,1}+F_{M,7}\right) + \left[\left(a_{1}b_{1}+a_{2}b_{2}\right)^{2}+\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)\right]\left(2t_{W}^{8}F_{T,9} + 4t_{W}^{4}F_{T,7}+8F_{T,2}\right) + 8\left(a_{1}b_{1}+a_{2}b_{2}\right)^{2}\left[t_{W}^{4}\left(t_{W}^{4}F_{T,8} + 2F_{T,5}+2F_{T,6}\right)+4F_{T,0}+4F_{T,1}\right] \ge 0$$

•  $t_W$  is the Weinberg angle.  $a_i, b_i$  are free (complex) parameters.

#### What it is

What are "positivity constraints":

- A linear combination of coefs.  $(F_{S,0}, F_{S,1}, F_{S,2}, \cdots)$  must be positive.
- Or equivalently, consider a vector \$\vec{c}\$ = (\$F\_{S,0}\$, \$F\_{S,1}\$, \$F\_{S,2}\$, \dots\$). Positivity says that \$\vec{c}\$ has to be positive upon projection on a certain direction \$\vec{x}\$\_i, i.e.

$$\vec{c}\cdot\vec{x}_i\geq 0$$

•  $\vec{x}_i$  come from the requirements that the VBS amplitudes (*WW*, *ZZ*, ... with polarisation  $\vec{a}, \vec{b}$ ) satisfy the fundamental principles of QFT (analyticity, unitarity, etc.), i.e. we have  $\vec{x}_{WW}(\vec{a}, \vec{b}), \vec{x}_{ZZ}(\vec{a}, \vec{b}), \vec{x}_{WZ}(\vec{a}, \vec{b}), \ldots$ 

イロト イポト イヨト イヨト

#### Implications on EXP results



Combined with measurements



Cen Zhang (IHEP)

SMEFT, Positivity, VBS

イロト イロト イヨト イヨト

# The approach

- First established in [A. Adams et al. JHEP '06]: dispersion relation + optical theorem, forward 2-to-2 scattering.
- Non-forward generalization: [C. de Rham et al. Phys.Rev.D '17], [C. de Rham et al. JHEP '18]
- Application in collider pheno:
  - ZZ and Z $\gamma$ : [B. Bellazzini and F. Riva '18]
  - Implications in Higgs physics under ceratin assumptions: [1. Low et al. '09] [A. Falkowski et al. '12]
- In general the approach has strong implication on SMEFT dim-8 operators, which are important for the interpretation of VBS, so we should understand the constraints.

# Analytic dispersion relation

• As an simplified version: consider the forward scattering (t = 0) of two identical particles with mass *m*, with possible heavy new physics.

(see [C. Cheung and G. N. Remmen '16] for a quick overview)

- If the UV completion exists, the amplitude M(s, t = 0)
  - is analytic and
  - ▶ satisfies Froissart unitarity bound  $M(s, 0) \leq O(s \ln^2 s)$ .

| Cen Zhang (IHEP) | SMEFT, Positivity, VBS |
|------------------|------------------------|
|------------------|------------------------|

# Analytic dispersion relation

• Consider the contour integral:

$$f = \frac{1}{2\pi i} \oint_{\Gamma} \mathrm{d}s \frac{M(s,0)}{(s-\mu^2)^3}$$

 Deform Γ to Γ' and notice that boundary contribution vanishes due to Froissart bound:



$$f = \frac{1}{2\pi i} \oint_{\Gamma} \mathrm{d}s \frac{M(s,0)}{(s-\mu^2)^3} = \frac{1}{2\pi i} \left( \int_{-\infty}^{0} + \int_{4m^2}^{\infty} \right) \mathrm{d}s \frac{\mathrm{Disc}M(s,0)}{(s-\mu^2)^3}$$

i.e. sum of residues at low energy = discontinuity along +real axis + discontinuity along -real axis

 Note that BSM (above Λ) enters the discontinuity, as poles (tree level) or branch cuts (heavy loops).

Cen Zhang (IHEP)

SMEFT, Positivity, VBS

# Derivation of positivity

- discontinuity along real axis must positive, because of optical theorem (disc. = xsec >0) (plus crossing symmetry for s < 0)
- $\Rightarrow$  sum of residues at low energy is positive.

We started with the amplitude in the full theory, but have reached a conclusion that only involves low energy, which can be computed in SMEFT:

$$\overline{\text{sum of residues at low energy}} = \frac{d^2 M(s,0)}{ds^2} = \sum_i c_i^{(8)} x_i + \sum_{i,j} c_i^{(6)} c_j^{(6)} y_{i,j} > 0$$

Conclusion: the above positivity condition must be satisfied, if

- SMEFT has a UV completion, that satisfies unitarity, Lorentz symmetry, is analytic.
- At low energy, the SMEFT is valid and tree level calculation is a good approximation, which anyway need to be assumed in a real measurement.
- Potential contaminations from higher dim operators, SM loops, EFT loops and so on. Interpret with care.

| Cen Zhang | (IHEP) |
|-----------|--------|
|-----------|--------|

SMEFT, Positivity, VBS

< □ > < □ > < □ > < □ > < □ > < □ >
 Feb. 15

#### Dim-6 contributions can be removed

$$\sum_{i} c_{i}^{(8)} x_{i} \geq -\sum_{i,j} c_{i}^{(6)} c_{j}^{(6)} y_{i,j}$$

- In general, we expect dim-6 to be better constrained by other processes.
- But in any case, dim-6 doesn't matter, because by explicit calculation the RHS is positive.
- E.g. from WZ scattering:

$$\mathsf{R.H.S} \propto a_3^2 b_3^2 \left[ e^2 C_{DW} - s_W^2 c_W^2 C_{\varphi D} - 4 s_W^3 c_W C_{\varphi WB} \right]^2 + 36 (a_1 b_1 + a_2 b_2)^2 e^2 s_W^2 c_W^2 C_W^2$$

and from WW:

$$\mathsf{R}.\mathsf{H}.\mathsf{S} \propto a_3^2 b_3^2 s_W^2 \left( e^2 C_{DB} + c_W^2 C_{\varphi D} \right)^2 + e^2 c_W^2 \left[ 6(a_1 b_1 + a_2 b_2) s_W C_W + a_3 b_3 e C_{DW} \right]^2$$

$$\sum_{i} c_{i}^{(8)} x_{i} \geq -\sum_{i,j} c_{i}^{(6)} c_{j}^{(6)} y_{i,j} \geq 0$$
 or simply:

Cen Zhang (IHEP)

< □ > < @ > < 클 > < 클 > Feb. 15

 $\vec{c} \cdot \vec{x}_i \geq 0$ 

#### Positivit

#### Polarisation

• Polarisation matters. Consider  $V_1 V_2 \rightarrow V_1 V_2$ 

$$V_1: \quad \vec{a} = (a_1, a_2, a_3)$$
  
 $V_2: \quad \vec{b} = (b_1, b_2, b_3)$ 

• As a result,  $ZZ \rightarrow ZZ$  gives the following constraint:

$$\begin{aligned} 8a_{3}^{2}b_{3}^{2}t_{W}^{4}\left(F_{S,0}+F_{S,1}+F_{S,2}\right)+\left[a_{3}^{2}\left(b_{1}^{2}+b_{2}^{2}\right)\right.\\ &+\left(a_{1}^{2}+a_{2}^{2}\right)b_{3}^{2}\right]t_{W}^{2}\left(-t_{W}^{4}F_{M,3}+t_{W}^{2}F_{M,5}-2F_{M,1}+F_{M,7}\right)\\ &+\left[\left(a_{1}b_{1}+a_{2}b_{2}\right)^{2}+\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)\right]\left(2t_{W}^{8}F_{T,9}\right.\\ &\left.+4t_{W}^{4}F_{T,7}+8F_{T,2}\right)+8\left(a_{1}b_{1}+a_{2}b_{2}\right)^{2}\left[t_{W}^{4}\left(t_{W}^{4}F_{T,8}\right.\\ &\left.+2F_{T,5}+2F_{T,6}\right)+4F_{T,0}+4F_{T,1}\right]\geq0\end{aligned}$$

Depending on *a*, *b*, there is a infinite number of constraints from ZZ ...
Other constraints from W<sup>±</sup>Z, W<sup>±</sup>W<sup>±</sup>, W<sup>±</sup>W<sup>∓</sup>, W<sup>±</sup>γ, Zγ, γγ.

Cen Zhang (IHEP)

# Outline







| Cen Zhang | (IHEP) |
|-----------|--------|
|-----------|--------|

< ≥ > < ≥ >

# **1D** limits

#### • Consider one operator at a time:

| <i>f</i> <sub>S,0</sub> | <i>f</i> <sub>S,1</sub>              | <i>f</i> <sub>S,2</sub>        | <i>f<sub>M,0</sub></i>  | <i>f<sub>M,1</sub></i>  | <i>f</i> <sub>M,2</sub>        | f <sub>M,3</sub> | <i>f</i> <sub>M,4</sub> | f <sub>M,5</sub> |
|-------------------------|--------------------------------------|--------------------------------|-------------------------|-------------------------|--------------------------------|------------------|-------------------------|------------------|
| +                       | +                                    | +                              | ×                       | -                       | ×                              | -                | ×                       | ×                |
| <i>f</i> <sub>M,7</sub> | <i>f</i> <sub><i>T</i>,0</sub>       | <i>f</i> <sub><i>T</i>,1</sub> | <i>f</i> <sub>T,2</sub> | <i>f</i> <sub>7,5</sub> | <i>f</i> <sub><i>T</i>,6</sub> | f <sub>T,7</sub> | f <sub>T,8</sub>        | f <sub>T,9</sub> |
| +                       | +                                    | +                              | +                       | ×                       | +                              | ×                | +                       | +                |
|                         | +: positive -: negative X: forbidden |                                |                         |                         |                                |                  |                         |                  |

• Note there are coefficients that are not individually allowed.

( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

Image: A matrix

# 1D limits: EXP

Cen Zhang (IHEP)



#### SMEFT. Positivity, VBS

#### Feb. 15

Channe WVy WVy

Žγ Žγ SS WW SS WW WZ T1→WW Y1→WW WVγ Žγ WVγ Zγ Wγ SS WW SS WW Zγ Y7→WW

ZYYY WYY WYY WYY

ZY WY WY WY WY WY SS WW SS WW SS WW

Wy ss WW ss WW

# 1D limits: EXP+positivity



Mixed coefficients, positivity



Cen Zhang (IHEP)

SMEFT, Positivity, VBS

# Going global: the pyramid case

As a first 3D example, consider  $F_{M,0}$ ,  $F_{M,1}$  and  $F_{M,5}$ .

- Remember we have  $\vec{c} \cdot \vec{x}(\vec{a}, \vec{b}) > 0$ .
- $\vec{x}$  inside a pyramid formed by other  $\vec{x}_i$  does not give new info!



# The pyramid case

- Allowed region is given by
  - $\begin{array}{l} -2F_{M1}+F_{M5}\geq 0,\\ -2F_{M1}-F_{M5}\geq 0,\\ -4F_{M0}-F_{M1}\geq 0,\\ 4F_{M0}-3F_{M1}> 0. \end{array}$
- In principle same approach applies for higher-D case: the problem is equivalent to finding a D-1 dimensional convex hull.
- Caveat: boundaries can be curves.



Cen Zhang (IHEP)

SMEFT, Positivity, VBS

#### The cone case

Consider  $F_{S,0}$ ,  $F_{M,0}$  and  $F_{T,0}$ .

• Possible  $\vec{x}$  directions form a cone, pointing to the positive ( $F_{S0}, F_{T0}$ ) direction



#### The cone case

- In this case positivity carves out a cone instead of a pyramid.
- The solution is

$$F_{S0} > 0$$
  
 $F_{T0} > 0$   
 $8F_{S0}F_{T0} > F_{M0}^{2}$ 

Note that F<sub>S0</sub> and F<sub>T0</sub> are no longer decoupled for F<sub>M0</sub> > 0.



- The second sec

# General solution: linear inequalities in S and M space

Following the above idea, one can solve for the entire 18-D space and arrive at a description of the allowed parameter space, for any and all  $\vec{a}$ ,  $\vec{b}$  values (complex).

 $M_{S,ij}F_{S,j} > 0$  $M_{M,ij}F_{M,j} > 0$ 

$$M_{S} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \qquad M_{M} = \begin{pmatrix} 0 & -2c_{W}^{4} & 0 & -s_{W}^{4} & 0 & s_{W}^{2} - s_{W}^{4} & c_{W}^{4} \\ 0 & -2c_{W}^{4} & 0 & -s_{W}^{4} & 0 & -c_{W}^{2}s_{W}^{2} & c_{W}^{4} \\ 0 & -2 & 0 & 0 & 0 & 0 & 1 \\ 0 & -2 & 0 & -1 & 0 & 1 & 1 \\ 0 & -2 & 0 & -1 & 0 & -1 & 1 \end{pmatrix}$$

< 6 b

# General solution: linear inequalities in T space

 $M_{T,ij}F_{T,j} > 0$ 



Cen Zhang (IHEP)

Feb. 15

# General solution: higher order ones

Cen Zhang (IHEP)

Feb. 15

4 E ► < E ►</p>

I > < 
 I >
 I

큰

# Two-parameter cases



< 2 > < 2 >

#### Two-parameter cases



< 2 > < 2 >

#### Two-parameter cases



< ≥ > < ≥ >

#### Tree-parameter cases



Cen Zhang (IHEP)

# Tree-parameter cases



Cen Zhang (IHEP)

SMEFT, Positivity, VBS

# Volume in full parameter space

When all 18 parameters are turned on, how much of the parameter space is excluded by positivity?

- Randomly generate points on a 18D sphere, uniformly distributed, and count how many of the them fall within constraints for all polarizations.
- We find that only ~ 2.1% parameter space is left (allowing complex polarisation vectors)



SMEFT, Positivity, VBS

# Outline







| Cen Zhang | (IHEP) |
|-----------|--------|
|-----------|--------|

< ≥ > < ≥ >

# Conclusion

- Dim-8 aQGC operator coefficients satisfy a set of positivity constraints, if they are generated by a UV completion.
- They have strong implication, e.g. 18D parameter space reduced to 2.1%, independent of experimental precision.
- The shape of the allowed parameter space shows interesting structure.

イロト イポト イヨト イヨト

#### Thank you!

|                  | •                      | ㅁ > 《國 > 《혼 > 《혼 >   혼 _ 의 |
|------------------|------------------------|----------------------------|
| Cen Zhang (IHEP) | SMEFT, Positivity, VBS | Feb. 15                    |

#### Backups

|                  | 4                      | 무지 이다가 가 문가 가 문가 나는 것. |
|------------------|------------------------|------------------------|
| Cen Zhang (IHEP) | SMEFT, Positivity, VBS | Feb. 15                |

#### Example: simplified model

#### Consider the simplified model in [Brass, Fleper, Kilian, Reuter, Sekulla '18]

In the present paper, we do not refer to a specific scenario. We construct a simplified model with transverse couplings of a generic heavy resonance  $\sigma$ . The effective Lagrangian takes the following form,

$$\mathcal{L}_{\sigma} = -\frac{1}{2}\sigma(m_{\sigma}^2 - \partial^2)\sigma + \sigma(J_{\sigma\parallel} + J_{\sigma\perp})$$
(19a)

$$J_{\sigma\parallel} = F_{\sigma H} \operatorname{tr} \left[ \left( \mathbf{D}_{\mu} \mathbf{H} \right)^{\dagger} \left( \mathbf{D}^{\mu} \mathbf{H} \right) \right]$$
(19b)

$$J_{\sigma\perp} = g^2 F_{W\sigma} \sigma \operatorname{tr} \left[ \mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu} \right] + {g'}^2 F_{B\sigma} \sigma \operatorname{tr} \left[ \mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} \right]$$
(19c)

with three independent coupling parameters.

In the low-energy limit, the scalar resonance can be integrated out, and we obtain the SMEFT Lagrangian with the following nonzero coefficients of the dimension-8 operators at leading order:

$$F_{S_0} = -F_{\sigma H}^2/2m_{\sigma}^2 \tag{20a}$$

$$F_{M_0} = -F_{\sigma H}F_{\sigma W}/m_{\sigma}^2 \tag{20b}$$

$$F_{M_2} = -F_{\sigma H} F_{\sigma B} / m_{\sigma}^2 \tag{20c}$$

$$F_{T_0} = -F_{\sigma W}^2/2m_{\sigma}^2 \tag{20d}$$

$$F_{T_5} = -F_{\sigma W} F_{\sigma B} / m_{\sigma}^2 \tag{20e}$$

$$F_{T_8} = -F_{\sigma B}^2/2m_{\sigma}^2.$$
 (20f)

| Cen Zhang | (IHEP) |  |
|-----------|--------|--|
|-----------|--------|--|

Feb. 15

イロト イポト イヨト イヨト

#### Example: simplified model

If we plug in the dim-8 coefficients into our positivity constraints, we see:

$$\begin{split} & ZZ: (a_1b_1+a_2b_2)^2 \left(s_W^4F_{\sigma B}+2c_W^4F_{\sigma W}\right)^2+a_3^2b_3^2s_W^4c_W^4e^{-4}F_{\sigma H}^2>0\\ & W^\pm Z:a_3^2b_3^2F_{\sigma H}^2>0\\ & W^\pm W^\pm:(a_1b_1+a_2b_2)^2F_{\sigma W}^2+\left[(a_1b_1+a_2b_2)F_{\sigma W}+a_3b_3s_W^2e^{-2}F_{\sigma H}\right]^2>0\\ & W^\pm W^\pm:(a_1b_1+a_2b_2)^2F_{\sigma W}^2+\left[(a_1b_1+a_2b_2)F_{\sigma W}-a_3b_3s_W^2e^{-2}F_{\sigma H}\right]^2>0\\ & ZA:(a_1b_1+a_2b_2)^2\left[s_W^2F_{\sigma B}-2c_W^2F_{\sigma W}\right]^2>0\\ & WA: \text{none}\\ & AA:(a_1b_1+a_2b_2)^2\left(F_{\sigma B}+2F_{\sigma W}\right)^2>0 \end{split}$$

\*up to factors of 2 that can be absorbed in the definitions of  $F_{\sigma X}$ 

All inequalities are satisfied, as they are all sum of squares.

- In a top-down approach, positivity is automatically true, in different models, different ways
   — by asking for positivity, we are not restricting the UV models.
- In a bottom-up approach, we can derive the same constraints, but without using model details, and therefore we restrict the parameter space without losing model-independence.

| Cen Zhang | (IHEP) |
|-----------|--------|
|-----------|--------|

イロト イポト イヨト イヨト

# "Unitarity"

- It is well-known that unitarity violation can be a problem in SMEFT.
  - In VBS, unitarization techniques are needed.
     E.g. [Perez, Sekulla, Zeppenfeld '18]
     [Brass, Fleper, Kilian, Reuter, Sekulla '18]
  - However, here unitarity problem concerns only the prediction of the SMEFT, and only signals the breakdown of EFT.
- Our bounds are derived from a different information,
   i.e. the Froissart unitarity bound. This unitarity refers to
   the behaviour of the UV theory at large energy.
  - This is then connected to the IR (EFT) of the theory by the dispersion relation

i.e. Unitarity in UV (full theory)

 $\Rightarrow$  Positivy in IR (EFT)





SMEFT, Positivity, VBS

イロト イポト イヨト イヨト