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QGC: Quartic Gauge-boson Couplings
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Many BSM models

BSM models
) =
/
T
Effective Field Theory Effective Field Theory

@ In a bottom-up approach, we could be “too much”
model-independent.
@ “Positivity constraints” give us some hints.

» In particular, the actual BSM parameter space is only ~ 2% of what
you naively expect from EFT operators.
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Outline

@ Positivity



What it is

What are “positivity constraints”:

@ A linear combination of coefs. (Fs, Fs,1, Fs2, - - ) must be positive.

8a3b5ty (Fso+ Fsi+ Fsz) + [a§ (b12 + bg)
+ (af + ag) bg] tay (—tﬁ/FM,a + tyFus — 2Fm1 + FM,7)
+ [(aby + aob2)? + (& + &) (b + 65) | (2t Frs

+4tyFr7+ 8FT,2) +8(aiby + abs)? [fﬁv (fﬁvFT,s
+2Frs5+2Fr6)+4Fr0+4F7r1] >0

@ fy is the Weinberg angle. a;, b; are free (complex) parameters.



What it is

What are “positivity constraints”:

@ A linear combination of coefs. (Fs, Fs,1, Fs,2, - - ) must be positive.

@ Or equivalently, consider a vector ¢ = (Fs o, Fs 1, Fs,2,- -+ ). Positivity says that ¢
has to be positive upon projection on a certain direction X;, i.e.

c-%>0

@ X; come from the requirements that the VBS amplitudes (WW, ZZ, .. .with
polarisation &, b) satisfy the fundamental principles of QFT (analyticity, unitarity,
etc.), i.e. we have Xww (&, b), Xzz(&, b), Xwz(&, b), ...



Implications on EXP results

Combined with measurements

Xww,zz,wz and positivity bounds
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The approach

@ First established in [A. Adams et al. JHEP '06]: dispersion relation + optical
theorem, forward 2-to-2 scattering.

@ Non-forward generalization: [C. de Rham et al. Phys.Rev.D '17], [C. de Rham et
al. JHEP 18]

@ Application in collider pheno:

» ZZ and Z~: (B Bellazzini and F. Riva 18]

» Implications in Higgs physics under ceratin assumptions:
[I. Low et al. '09] [A. Falkowski et al. '12]

@ In general the approach has strong implication on SMEFT dim-8
operators, which are important for the interpretation of VBS, so we
should understand the constraints.


https://arxiv.org/abs/1806.09640
https://arxiv.org/abs/0907.5413
https://arxiv.org/abs/1202.1532

Positivity

Analytic dispersion relation

@ As an simplified version: consider the forward scattering (t = 0) of two
identical particles with mass m, with possible heavy new physics.
(see [C. Cheung and G. N. Remmen "16] for @ quick overview)

@ If the UV completion exists, the amplitude M(s, t = 0)

» is analytic and

» satisfies Froissart unitarity bound M(s,0) < O(sIn?s).


https://arxiv.org/abs/1601.04068

Positivity

Analytic dispersion relation

@ Consider the contour integral:

B 1 M(s,0)
"= omi ﬁdsﬁ —2)

@ Deform I to " and notice that boundary
contribution vanishes due to Froissart
bound:

oo ([ L)

i.e. \ sum of residues at low energy\

’discontinuity along +real axis\ discontinuity along -real axis \

@ Note that BSM (above A) enters the discontinuity, as poles (tree level) or
branch cuts (heavy loops).



Derivation of positivity

o ‘ discontinuity along real axis ‘ must positive, because of optical theorem (disc. = xsec >0)
(plus crossing symmetry for s < 0)

[+ :>‘ sum of residues at low energy ‘ is positive.

We started with the amplitude in the full theory, but have reached a conclusion that only involves
low energy, which can be computed in SMEFT:

- d2M(s, 0
‘ sum of residues at low energy ‘ (S )

Zc X+ZC y,,,>0

@ Conclusion: the above positivity condition must be satisfied, if

» SMEFT has a UV completion, that satisfies unitarity, Lorentz symmetry, is analytic.

> At low energy, the SMEFT is valid and tree level calculation is a good approximation,

which anyway need to be assumed in a real measurement.

> Potential contaminations from higher dim operators, SM loops, EFT loops and so on.
Interpret with care.

Cen Zhang (IHEP) SMEFT, Positivity, VBS Feb. 15
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Positivity

Dim-6 contributions can be removed

x> -39y,
i ij

@ In general, we expect dim-6 to be better constrained by other processes.
@ But in any case, dim-6 doesn’t matter, because by explicit calculation the RHS is positive.
@ E.g. from WZ scattering:

R.H.S o &2b2 [e2cDW — 2,68 Cp — 4sf;,,cwc¢,WB] +36(a by + axbp)2€2s2,c3,C2,

@ and from WW:

2
R.H.S « &2b2s, (eQCDB + cﬁ,cw) + €2c5 [6(ar by + axba)swCw + asbseCpw]?

c x> c y, >0 or simply: C-X>0
j

Cen Zhang (IHEP) SMEFT, Positivity, VBS Feb. 15 14



Positivity

Polarisation

@ Polarisation matters. Consider Vi Vo — V4 Vs
Vii ad=(aa,as)
Vo: b= (b, bz, bs)
@ As aresult, ZZ — ZZ gives the following constraint:
8BS (Fso + Fs + Fsz) + & (b + b5 )
+ (aﬁ + ag) b%} tw (—tﬁvFM,s + tyFus — 2Fm1 + FM,7)
+ [(31 by + apb2)? + (a12 4 a§) (b12 T bé)] (ZZ‘SVFRQ

+atyFr7+ 8FT,2) +8(arb + ab)? [l‘ﬁv (f;/FT,s
+2Fr5 +2Fre) +4Fro+4F71] >0

@ Depending on 3, 5, there is a infinite number of constraints from ZZ ...
@ Other constraints from W*Z, W W=, WEWT, Wy, Zy, yr.

Cen Zhang (IHEP) SMEFT, Positivity, VBS Feb. 15 15



Implication

Outline

e Implication
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Implication

1D limits

@ Consider one operator at a time:

fsi fso fuo w1 fuz fuz fua fus

fso
+ + + X - X - X X
w7z fro fri fro frs freg fr7 frg fro
+ + + + X + X + +

+: positive —: negative  X: forbidden

@ Note there are coefficients that are not individually allowed.

Feb. 15



i ]
1D limits: EXP

Individual limits on transversal coefficients

Individual limits on mixed coefficients

oM —
Jan 2019 s — Channel Jan 2019 e = Channel
—_— 3 —
frg /A — ‘m fiyo /A — Wi
— zyy H 2y
— Wy = G
e wvy H ssww
H Zy 1 s WW
H zy 1 wZ
— wy g e
H ss Ww T W
! o ww fy 1 /A Lrwre ] wh
— Zy
1 zz — 2y
fr /A" wvy — Wy
71 — zy H ssWW
H Wy 1 sSWW
H ssWW Ll W oww
1 ssWW i ToWwW
1 wz fuz IA*
1 2z 2 _ Wy
fra/A* ol =] W,
¢ — zy Y
— Wy ] z
" S = i
ss u
H wz fua I Wy
z —_—
e = Z — W
s —_— Wy H pa
H Wy '1:[' i
frg/A® — i fon /A e Wi
‘ : = W
fr/A* — Wy N = wiy
8 —i wy “IAE —
g IA* H 'y fig /A — v
T8 H zy H ssWW
. i z . L ww
frolA un 7 fuz /A — Wy
, W ) Lo T S
1 P R T L
~100 0 100 —2000 0 2000
v
‘ https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC#aQGC_Results


https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC#aQGC_Results

o e
1D limits: EXP+positivity

Transversal coefficients, positivity

Jan 2019 e =

\ °
No UV completion

Mixed coefficients, positivity

Jan 2019 =

0
\— No UV completion




Implication

Going global: the pyramid case

As a first 3D example, consider Fu,0, Fux,1 and Fu s.

@ Remember we have - X(3, b) > 0.

@ X inside a pyramid formed by other X; does not give new info!
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Implication

The pyramid case

3D allowed region given by a pyramid
@ Allowed region is given by o

—2Fwm + Fus > 0,
—2Fw — Fus > 0,
—4Fmo — Fu >0,
4Fpo — 3Fm > 0.

@ In principle same approach
applies for higher-D case: the
problem is equivalent to
finding a D-1 dimensional
convex hull.

@ Caveat: boundaries can be
curves. fuo a1 fuz fus fusa  Tus

Recall: — P ~ X




The cone case

Consider FS,O’ FM,O and Fr,o.

@ Possible X directions form a cone, pointing to the positive (Fso, Fro) direction
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Implication

The cone case

@ In this case positivity carves out a

cone instead of a pyramid.
@ The solution is
Fso >0
FTO >0
8FsoFro > Fino

@ Note that Fgy and Fro are no longer

decoupled for Fyo > 0.

(IHEP)
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Implication

General solution: linear inequalities in S and M space

Following the above idea, one can solve for the entire 18-D space and arrive at a description of
the allowed parameter space, for any and all &, b values (complex).

MS,I'jFS,]' >0
MM,ijFM,[' >0
0 _2021/ 0 —szv 0 s s s2ﬁv Cgv
2 1 1 0 —2¢cy 0 -—sp 0 —cysy cpy
Ms=| 1 1 1 My=| 0 -2 0 0 0 1
1 0 1 0 -2 0 -1 0 1 1
0 -2 o -1 O —1 1

Cen Zhang (IHEP) SMEFT, Positivity, VBS Feb. 15 24



Implication

General solution: linear inequalities in T space

- N O
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General solution: higher order ones

WW, My _&M, _ | 32(2Fg o+ Fg 1 + Fs2)(2FT 0 + Fr 1 + Fr2)

— max(0, 4Fy o + Fiy1, —4Fy.0 + 3Fm 1 — 2Fy.7)° > 0

WW, My &M | 8(2Fs o+ Fs 1+ Fs2)(8Fr 0+ 12F7 1 +5F7 5)

— max(0, 4Fy o + Fi.1, —4Fm.0 + 3Fm 1 — 2Fy.7)° > 0

ZZ, Mi&M; | 8(Fs o+ Fs 1+ Fs2) [40%(25,0 +2F7 1 + Fr2) + 2¢ly Sty (2F7 5 + 2F1 6 + Fr.7)

4 4 4 2
+33V(2FT,8 + FT,Q)} — max {01 2 (2CWFM,0 + Fm 25w — Fmasw + FM,Asw) s
4 2 2 4 2 4\]2
—Cw(4Fm,0 — 2Fm,1 + Fu,7) — 2¢wFum,asw — sw(2Fm,2 — Fu,3) — Fus (SW - SW)} >0

16(Fs,0 + Fs,2) [40%(45,1 +Fr2) + Sw(4Fr g + FT,7)} — max {07 —265,Fy 7

2 2
- 2\/(2FM,1 — Fin,7) (cly Fu1 — Fun.7) + 6B, Fu 5% + Fu 3sly) — 4Fu.asly — FusSy»

2
2c} Fiy.7 — 2\/(2FM,1 — Fu.7) (c‘,%/(2FM=1 — Fu,7) + 2, Fy 582, + FM13sﬁV)

2 212
+4Fy a8y + FM,SSW} >0



Implication

Two-parameter cases
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Implication

Two-parameter cases
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Tree-parameter cases
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Tree-parameter cases
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Volume in full parameter space

When all 18 parameters are turned on, how much of the parameter space is
excluded by positivity?

@ Randomly generate points on a 18D sphere,
uniformly distributed, and count how many of
the them fall within constraints for all
polarizations.

@ We find that only ~ 2.1% parameter space
is left (allowing complex polarisation vectors)

2.1% of total

~ Cenzhang (HEP) | SMEFT, Positivity, VBS Feb. 15 32



Conclusion

Outline

e Conclusion

Cen Zhang (IHEP)

SMEFT, Positivity, VBS

Feb. 15

33



Conclusion

Conclusion

@ Dim-8 aQGC operator coefficients satisfy a set of positivity constraints, if

they are generated by a UV completion.

@ They have strong implication, e.g. 18D parameter space reduced to
2.1%, independent of experimental precision.

@ The shape of the allowed parameter space shows interesting structure.

Cen Zhang (IHEP) SMEFT, Positivity, VBS Feb. 15
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Conclusion

Thank you!

Cen Zhal SMEFT, Positivity, VBS
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Conclusion

Backups

Cen Zhal SMEFT, Positivity, VBS
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Conclusion

Example: simplified model

Consider the simplified model in [Brass, Fleper, Kilian, Reuter, Sekulla '18]

In the present paper, we do not refer to a specific scenario. We construct a simplified model
with transverse couplings of a generic heavy resonance o. The effective Lagrangian takes the
following form,

L,= 7%U(m§ - 82)0 +0(Joy + Jor) (19a)
Ty = Fyytr [(D“H)'(D“H)} (19b)
Jo1 = §* Fioo tr [W,, W] + g Fpootr [B..B"] (19¢)

with three independent coupling parameters.

In the low-energy limit, the scalar resonance can be integrated out, and we obtain the
SMEFT Lagrangian with the following nonzero coefficients of the dimension-8 operators at
leading order:

Fs, = F§H/2m§ (20a)

FMD = *FUHFuW/mi (ZOb)

Fy,=— aHFgB/mg (20c)

Fr,= Fly/2m} (20d)

Fr, = F,wF,/m (20e)

Fr = F2g/2m2. 20f
8

Cen Zhal SMEFT, Positivity, VBS Feb. 15



Example: simplified model

If we plug in the dim-8 coefficients into our positivity constraints, we see:

27 : (ayby + apby)? (54WFUB + ZCﬁVFUW)Z + agbgsa,c“wef“FgH >0
wtz . 2b3F%, >0
WEWE - (@iby + apb)?F2y, + [(@1b1 + apb2)Fow + asbasiye 2Fp]” > 0
WEWT - (aiby + apb)?F2y, + [(@1b1 + apb2)Fow — aabasiye 2F,u]” > 0
ZA: (arby + a3bo)? [ Fup — 265 Fow]” > 0
WA : none
AA : (ayby + apbp)? (Fop + 2F,w)° > 0

*up to factors of 2 that can be absorbed in the definitions of F, x

All inequalities are satisfied, as they are all sum of squares.

@ In atop-down approach, positivity is automatically true, in different models, different ways
— by asking for positivity, we are not restricting the UV models.

@ In a bottom-up approach, we can derive the same constraints, but without using model
details, and therefore we restrict the parameter space without losing model-independence.



“Unitarity”

@ It is well-known that unitarity violation can be a problem
in SMEFT.

> In VBS, unitarization techniques are needed.
E.g. [Perez, Sekulla, Zeppenfeld '18]
[Brass, Fleper, Kilian, Reuter, Sekulla "18]
> However, here unitarity problem concerns only

the prediction of the SMEFT, and only signals the
breakdown of EFT.

@ Our bounds are derived from a different information,
i.e. the Froissart unitarity bound. This unitarity refers to
the behaviour of the UV theory at large energy.

> This is then connected to the IR (EFT) of the
theory by the dispersion relation

i.e. | Unitarity in UV (full theory) \:>\ Positivy in IR (EFT)

Cen Zhang (IHEP)
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Amplitude Unitarity in EFT

EFT

Full theory

Amplitude

EFT

AN

Energ}

Unitarity in UV

|A] < O(sIn?s)

/ Full theory

Implies positivity in IR

Feb. 15
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