

GPDs as a (cool) tool to study nucleon structure

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University

GPDs as a (cool) tool to study nucleon structure – p.1/48

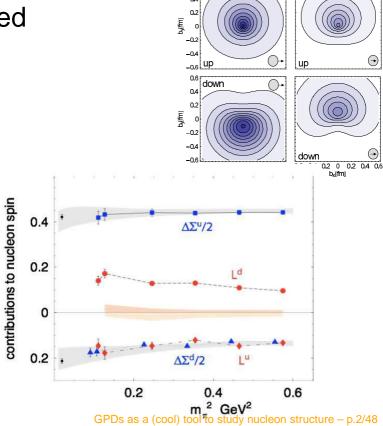
Outline

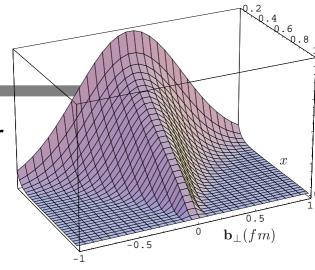
Probabilistic interpretation of GPDs as Fourier trafo of impact parameter dependent PDFs

•
$$H(x, 0, -\mathbf{\Delta}_{\perp}^2) \longrightarrow q(x, \mathbf{b}_{\perp})$$

$$\quad \tilde{H}(x,0,-\boldsymbol{\Delta}_{\perp}^2) \longrightarrow \Delta q(x,\mathbf{b}_{\perp})$$

- $E(x, 0, -\Delta_{\perp}^2) \longrightarrow \bot$ distortion of PDFs when the target is \bot polarized
- **DVCS** $\xrightarrow{?}{\leadsto}$ GPDs
- **9** GPDs for $x = \xi$
- What is orbital angular momentum?
- Summary

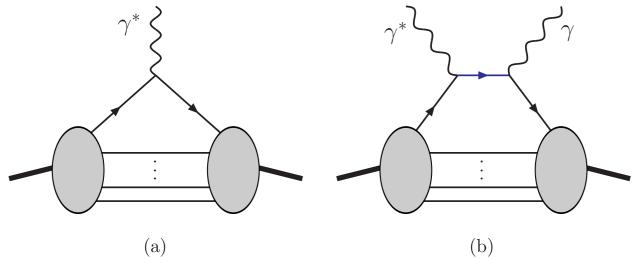




Deeply Virtual Compton Scattering (DVCS)

• virtual Compton scattering: $\gamma^* p \longrightarrow \gamma p$ (actually: $e^- p \longrightarrow e^- \gamma p$)

- 'deeply': $-q_{\gamma}^2 \gg M_p^2$, |t| → Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks
- \rightarrow only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x)
- → DVCS amplitude provides access to momentum-decomposition of form factor = Generalized Parton Distribution (GPDs).

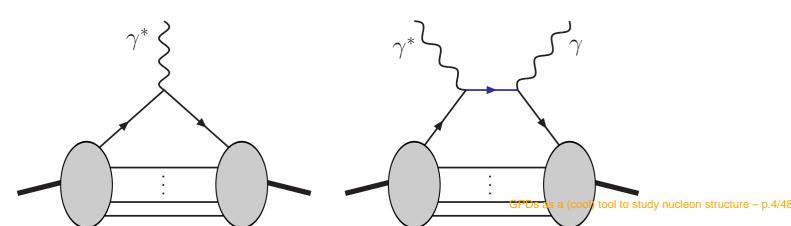


Generalized Parton Distributions (GPDs)

• GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x = \frac{1}{2} (x_i + x_f)$ of the active quark

$$\int dx H_q(x,\xi,t) = F_1^q(t) \qquad \int dx \tilde{H}_q(x,\xi,t) = G_A^q(t)$$
$$\int dx E_q(x,\xi,t) = F_2^q(t) \qquad \int dx \tilde{E}_q(x,\xi,t) = G_P^q(t),$$

- x_i and x_f are the momentum fractions of the quark before and after the momentum transfer
- $2\xi = x_f x_i$
- GPDs can be probed in deeply virtual Compton scattering (DVCS)



Generalized Parton Distributions (GPDs)

DVCS amplitude

$$\mathcal{A}_{DVCS}(\xi,t) \sim \int_{-1}^{1} \frac{dx}{x-\xi+i\varepsilon} GPD(x,\xi,t)$$

In the limit of vanishing t and ξ , the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$H_q(x, 0, 0) = q(x)$$
 $\tilde{H}_q(x, 0, 0) = \Delta q(x).$

Impact parameter dependent PDFs

define \perp localized state [D.Soper,PRD15, 1141 (1977)]

$$\left|p^{+},\mathbf{R}_{\perp}=\mathbf{0}_{\perp},\lambda\right\rangle\equiv\mathcal{N}\int d^{2}\mathbf{p}_{\perp}\left|p^{+},\mathbf{p}_{\perp},\lambda\right\rangle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has $\mathbf{R}_{\perp} \equiv \frac{1}{P^+} \int dx^- d^2 \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x) = \sum_i x_i \mathbf{r}_{i,\perp} = \mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

$$q(x, \mathbf{b}_{\perp}) \equiv \int \frac{dx^{-}}{4\pi} \langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} | \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \rangle e^{ixp^{+}x^{-}}$$

$$\hookrightarrow \begin{array}{l} q(x, \mathbf{b}_{\perp}) &= \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i \mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H(x, 0, -\mathbf{\Delta}_{\perp}^2), \\ \Delta q(x, \mathbf{b}_{\perp}) &= \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i \mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2), \end{array}$$

Impact parameter dependent PDFs

- No relativistic corrections (Galilean subgroup!)
- \hookrightarrow corrolary: interpretation of 2d-FT of $F_1(Q^2)$ as charge density in transverse plane also free from relativistic corrections

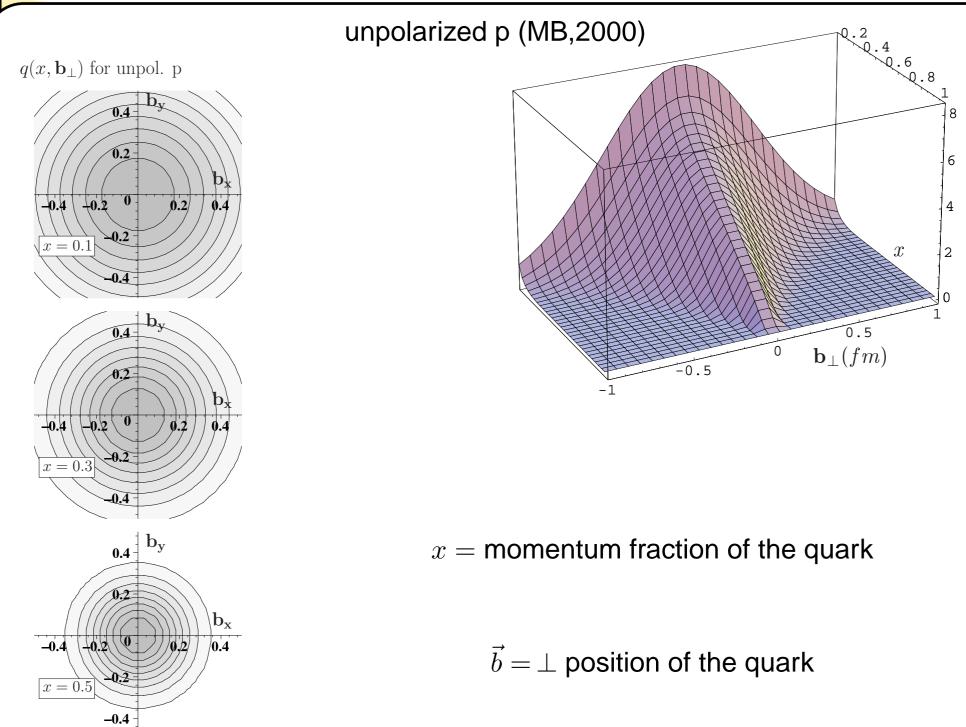
$$\langle p^{+\prime}, 0_{\perp} | b^{\dagger}(x, \mathbf{b}_{\perp}) b(x, \mathbf{b}_{\perp}) | p^{+}, 0_{\perp} \rangle \sim | b(x, \mathbf{b}_{\perp}) \rangle | p^{+}, 0_{\perp} |^{2}$$

works only for $p^+ = p^{+\prime}$

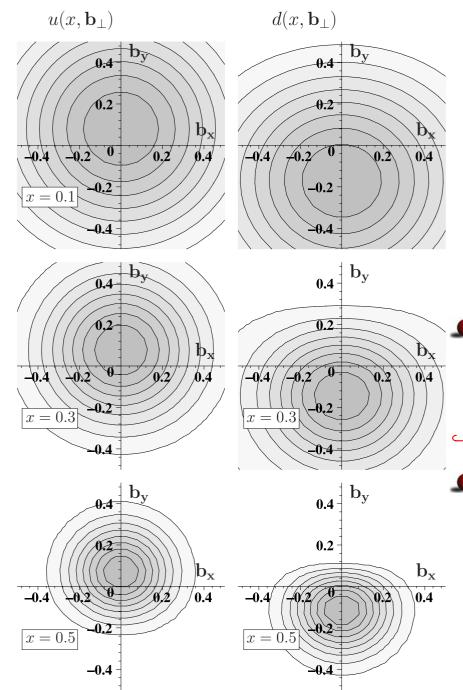
- Reference point for IPDs is transverse center of (longitudinal) momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{i,\perp}$
- \hookrightarrow for $x \to 1$, active quark 'becomes' COM, and $q(x, \mathbf{b}_{\perp})$ must become very narrow (δ -function like)

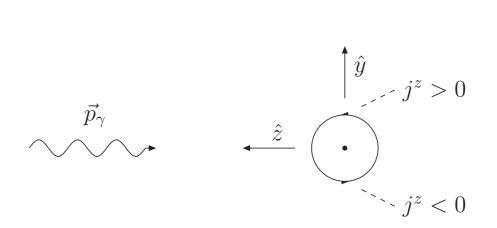
 \hookrightarrow $H(x, 0, -\Delta_{\perp}^2)$ must become Δ_{\perp} indep. as $x \to 1$ (MB, 2000)

← consistent with lattice results for first few moments as a (cool) tool to study nucleon structure - p.7/48



p polarized in $+\hat{x}$ direction (MB,2003)





photon interacts more strongly with quark currents that point in direction opposite to photon momentum

sideways shift of quark distributions

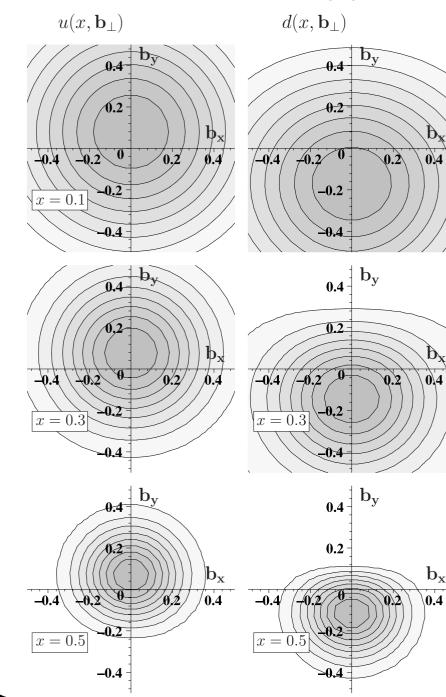
sign & magnitude of shift (modelindependently) predicted to be related to the proton/neutron anomalous magnetic moment!

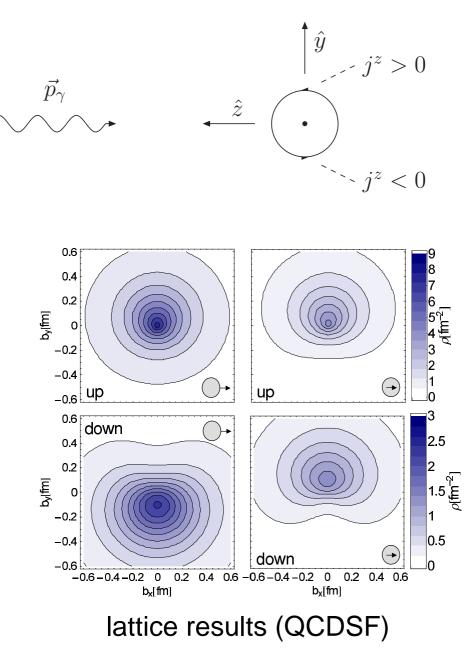
p polarized in $+\hat{x}$ direction

b,

Dx

 $\mathbf{b}_{\mathbf{x}}$





Accessing GPDs in DVCS

- ξ longitudinal mometum transfer on the target $\xi = \frac{p^{+\prime}-p^{+}}{p^{+\prime}+p^{+}}$
- x (average) momentum fraction of the active quark $x = \frac{k^{+\prime} + p^+}{n^{+\prime} + n^+}$
- $\Im \mathcal{A}_{DVCS}(\xi,t) \longrightarrow GPD^{(+)}(\xi,\xi,t)$
 - only sensitive to 'diagonal' $x = \xi$
 - limited ξ range

$$-t = \frac{4\xi^2 M^2 + \mathbf{\Delta}_{\perp}^2}{1 - \xi^2}$$

$$\hookrightarrow -t_{min} = \frac{4\xi^2 M^2}{1-\xi^2}$$
 or ξ_{max} for given value of $-t$

● $\Re A_{DVCS}(\xi, t) \longrightarrow \int_{-1}^{1} dx \frac{GPD^{(+)}(x,\xi,t)}{x-\xi}$ probes GPDs off the diagonal, but ...

Polynomiality & the D-term

Lorentz invariance \Rightarrow polynomiality (n odd)

$$\int_0^1 dx x^n GPD^{(+)}(x,\xi,t) = B_{n0}(t) + B_{n2}(t)\xi^2 + B_{n4}(t)\xi^4 + \dots + B_{n,n+1}(t)\xi^{n+1}$$

Consider in the following only charge-even GPDs, e.g. $H^{(+)}(x,\xi,t) \equiv H(x,\xi,t) - H(-x,\xi,t)$ but drop superscript $^{(+)}$

- → Polynomiality highly constrains possible functional form of GPDs and plays crucial role in 'deconvolution' of the DVCS amplitude
- original 'double distribution' representation for GPDs (Radyushkin) manifestly satisfied polynomiality, but without $B_{n,n+1}$ -term
- D-term' (Polyakov & Weiss) added to allow for highest power of ξ

$$H(x,\xi,t) = H_{DD}(x,\xi,t) + \Theta(\xi^2 - x^2)D\left(\frac{x}{\xi},t\right)$$

D-term' (Polyakov & Weiss) added to allow for highest power of ξ

$$H(x,\xi,t) = H_{DD}(x,\xi,t) + \Theta(\xi^2 - x^2)D\left(\frac{x}{\xi},t\right)$$

D-term contributes only to real part of DVCS amplitude, with 'D-form factor' $\Delta(t) = \int_0^1 dz \frac{D(z,t)}{1-z}$

$$\Re \mathcal{A}(\xi, t) = \int_0^1 dx \frac{H_{DD}^+(x, \xi, t)}{x - \xi} + \Delta(t)$$

Solution For fixed *x*, contribution of *D*-term to *H*(*x*, *ξ*, *t*) disappears as $\xi \to 0$, but $\delta(x)$ -like contribution to Compton Amplitude

$$\lim_{\xi \to 0} \frac{H(x,\xi,t)}{x-\xi} = \frac{H_{DD}(x,0,t)}{x} + \delta(x)\Delta(t)$$

$$\mathcal{A}(\xi, t) \longleftrightarrow GPD^{(+)}(\xi, \xi, t), \ \Delta(t)$$

(Anikin & Teryaev): Δ arises as subtraction-constant in dispersion relation for DVCS amplitude

$$\Re \mathcal{A}(\nu,t) = \frac{\nu^2}{\pi} \int_0^\infty \frac{d\nu'^2}{\nu'^2} \frac{\Im \mathcal{A}(\nu',t)}{\nu'^2 - \nu^2} + \Delta(t)$$

• In combination with LO factorization ($\mathcal{A} = \int_{-1}^{1} dx \frac{H(x,\xi,t)}{x-\xi+i\varepsilon}$)

$$\Re \mathcal{A}(\xi, t) = \int_{-1}^{1} dx \frac{H(x, \xi, t)}{x - \xi} = \int_{-1}^{1} dx \frac{H(x, x, t)}{x - \xi} + \Delta(t)$$

- earlier derived from polynomiality (Goeke, Polyakov, Vanderhaeghen)
- \hookrightarrow Possible to 'condense' information contained in \mathcal{A}_{DVCS} (fixed Q^2 , assuming leading twist factorization) into GPD(x, x, t) & $\Delta(t)$

 $\mathcal{A}(\xi,t) \leftrightarrow \begin{cases} GPD(\xi,\xi,t) \\ \Delta(t) \end{cases}$

 $\mathcal{A}(\xi,t) \longleftrightarrow GPD(\xi,\xi,t), \, \Delta(t)$

- - using polynomiality/dispersion relation, DVCS information on GPDs (fixed Q²) can be 'projected back' onto diagonal plus D-term!
 - \hookrightarrow better to fit parameterizations for GPD(x, x, t) plus $\Delta(t)$ to \mathcal{A}_{DVCS} rather than parameterizations for $GPD(x, \xi, t)$?
- even after 'projecting back' onto GPD(x, x, t), $\Re \mathcal{A}(\xi, t)$ still provides new (not in $\Im \mathcal{A}$) info on GPDs:
 - D-form factor
 - constraints from $\int dx \frac{GPD(x,x,t)}{x-\xi}$ on $GPD(\xi,\xi,t)$ in kinematically inaccessible range $-t \leq -t_0 \equiv \frac{4M^2\xi^2}{1-\xi^2}$
- **9** good news for model builders: as long as a model fits $\Im A(\xi, t)$, it should also do well for $\Re A(\xi, t)$, provided
 - model has polynomility
 - allows for a D-form factor

 $\mathcal{A}(\xi,t) \longleftrightarrow GPD(\xi,\xi,t), \, \Delta(t)$

trivial solution:

$$H_D D(x,\xi,t) \equiv H(x,x,t)$$

plus suitable $\Delta(t)$ will

- fit DVCS data
- satisfy polynomiality (trivially!)

Application of
$$\int_{-1}^{1} dx \frac{H(x,\xi,t)}{x-\xi} = \int_{-1}^{1} dx \frac{H(x,x,t)}{x-\xi} + \Delta(t)$$

• take $\xi \to 0$ (should exist for -t sufficiently large)

$$\int_{-1}^{1} dx \frac{H^{(+)}(x,0,t)}{x} = \int_{-1}^{1} dx \frac{H^{(+)}(x,x,t)}{x} + \Delta(t)$$

- → DVCS allows access to same generalized form factor $\int_{-1}^{1} dx \frac{H^{(+)}(x,0,t)}{x}$ also available in WACS (wide angle Compton scattering), but *t* does not have to be of order Q^2
- \rightarrow after flavor separation, $\frac{1}{F_1(t)} \int_{-1}^1 dx \frac{H^{(+)}(x,0,t)}{x}$ at large *t* provides information about the 'typical *x*' that dominates large *t* form factor

GPDs for $x = \xi$

examples for interesting physics that can be extracted from GPDs:

- impact parameter dependent PDFs $q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i \mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H(x, 0, -\mathbf{\Delta}_{\perp}^2)$
- $\hookrightarrow \xi$ needs to be zero

Ji:
$$\langle \vec{J}^q \rangle_{\vec{S}} = \vec{S} \int dx \, x \left[H(x,\xi,0) + E(x,\xi,0) \right]$$

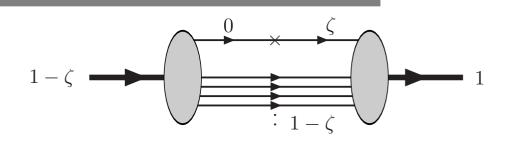
 $\hookrightarrow \xi$ can be arbitrary but fixed value

DVCS experiments provide information about:

- $GPDs(\xi, \xi, t)$ directly from imaginary part of DVCS amplitude
- ∫ $\frac{dx}{x\pm\xi}GPDs(x,\xi,t)$ from real part, which is probably dominated by vicinity *x* ≈ *ξ*
- additional constraints from PDFs, form factors, positivity, polynomiality, evolution, ...

✓ until GPDs have been globally gegenbauered to the point where $x - \xi$ dependence has been disentangled, what can we learn from $GPDs(\xi, \xi, t)$?
GPDs as a (cool) tool to study nucleon structure - p.18/48

Overlap Representation for GPDs $(x > \zeta)$



$$GPD(x,\zeta,t) = \sum_{n,\lambda_i} (1-\zeta)^{1-\frac{n}{2}} \int \prod_{i=1}^n \frac{\mathrm{d}x_i \mathrm{d}\mathbf{k}_{\perp,i}}{16\pi^3} 16\pi^3 \delta\left(1-\sum_{j=1}^n x_j\right) \delta\left(\sum_{j=1}^n \mathbf{k}_{\perp j}\right) \delta(x-x_1)$$
$$\times \psi_{(n)}^{s'}(x'_i, \mathbf{k}'_{\perp i}, \lambda_i)^* \psi_{(n)}^s(x_i, \mathbf{k}_{\perp i}, \lambda_i),$$

•
$$\Delta$$
 is the transverse momentum transfer.
• $x'_1 = \frac{x_1 - \zeta}{1 - \zeta}$ and $\mathbf{k}'_{\perp 1} = \mathbf{k}_{\perp 1} - \frac{1 - x_1}{1 - \zeta} \Delta_{\perp}$ for the active quark, and
• $x'_i = \frac{x_i}{1 - \zeta}$ and $\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} + \frac{x_i}{1 - \zeta} \Delta_{\perp}$ for the spectators $i = 2, ..., n$.

GPDs in \perp **position space** (n = 2)

$$GPD(x,\zeta,t) = \sum_{\lambda_i} \int \frac{\mathrm{d}\mathbf{k}_{\perp,1}}{16\pi^3} \psi^{s'}(x'_1,\mathbf{k}'_{\perp 1},\lambda_i)^* \psi^s(x_1,\mathbf{k}_{\perp 1},\lambda_i),$$

•
$$x'_1 = \frac{x_1 - \zeta}{1 - \zeta}$$
 and $\mathbf{k}'_{\perp 1} = \mathbf{k}_{\perp 1} - \frac{1 - x_1}{1 - \zeta} \mathbf{\Delta}_{\perp}$ for the active quark

spectator momentum constrained by momentum conservation: $x_2 = 1 - x_1 \text{ and } \mathbf{k}_{\perp 2} = -\mathbf{k}_{\perp 1}$

Diagonalize by Fourier transform

9 \mathbf{r}_{\perp} is the \perp distance between active quark and spectator

$$\hookrightarrow GPD(x,\zeta,t) \propto \int d^2 \mathbf{r}_{\perp} \tilde{\psi}^*(x',\mathbf{r}_{\perp}) \tilde{\psi}^*(x',\mathbf{r}_{\perp}) e^{-i\frac{1-x}{1-\zeta}\mathbf{r}_{\perp}\cdot\boldsymbol{\Delta}_{\perp}}$$

GPDs in \perp **position space (general case)**

For the same steps in the general case $(n \ge 3)$ yields.....

$$GPD(x,\zeta,t) = \sum_{n} (1-\zeta)^{1-\frac{n}{2}} \int \prod_{i=1}^{n} \frac{d^2 \mathbf{r}_{\perp i}}{2\pi} \tilde{\psi}_{(n)}(x'_i,\mathbf{r}_{\perp i})^* \tilde{\psi}^s_{(n)}(x_i,\mathbf{r}_{\perp i}) e^{-i\frac{1-x}{1-\zeta}(\mathbf{r}_{\perp 1}-\mathbf{R}_{\perp s})\cdot\mathbf{\Delta}_{\perp s}}$$

- **R**_{$\perp s$} is the center of momentum of the spectators.
- $\hookrightarrow \text{ FT of GPD w.r.t. } \Delta_{\perp} \text{ gives overlap when active quark and}$ spectators are distance $\frac{1-x}{1-\zeta}\mathbf{r}_{\perp}$ apart

GPDs in \perp **position space (general case)**

- **9** general case: Δ_{\perp} conjugate to $\frac{1-x}{1-\zeta}\mathbf{r}_{\perp}$
- Special case: $\zeta = 0 \implies \frac{1-x}{1-\zeta}\mathbf{r}_{\perp} = (1-x)\mathbf{r}_{\perp} = \mathbf{b}_{\perp} = \text{distance}$ between active quark and center of momentum of hadron.

• special case:
$$x = \zeta \Rightarrow \frac{1-x}{1-\zeta}\mathbf{r}_{\perp} = \mathbf{r}_{\perp}$$

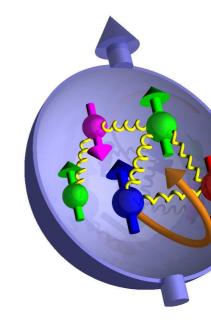
- \hookrightarrow for $x = \zeta$, the variable that is (Fourier) conjugate to Δ_{\perp} is the distance between the active quark and the center of momentum of the spectators \mathbf{r}_{\perp}
- If unlike the \mathbf{b}_{\perp} distribution, which must become point-like for $x \to 1$, the \mathbf{r}_{\perp} -distribution does not have to become narrow for $x \to 1$
- Note: the t-slope still has to go to zero as $\zeta \to 1$, as

$$-t = \frac{\zeta^2 M^2 + {\Delta_\perp}^2}{1 - \zeta}$$

 \hookrightarrow *t*-slope *B* and Δ^2_{\perp} -slope B_{\perp} related via $B = (1 - \zeta)B_{\perp}$

Motivation

- polarized DIS: only $\sim 30\%$ of the proton spin due to quark spins
- $\label{eq:spin} \hookrightarrow \mbox{`spin crisis'} \longrightarrow \mbox{`spin puzzle', because } \Delta\Sigma \mbox{ much smaller than the quark model result } \Delta\Sigma = 1$
- \hookrightarrow quest for the remaining 70%
 - quark orbital angular momentum (OAM)
 - gluon spin
 - gluon OAM
- \hookrightarrow How are the above quantities defined?
- \hookrightarrow How can the above quantities be measured



example: angular momentum in QED

consider, for simplicity, first QED without electrons:

$$\vec{J} = \int d^3 r \, \vec{x} \times \left(\vec{E} \times \vec{B} \right) = \int d^3 r \, \vec{x} \times \left[\vec{E} \times \left(\vec{\nabla} \times \vec{A} \right) \right]$$

use $\vec{E} \times (\vec{\nabla} \times \vec{A}) = E^j \vec{\nabla} A^j - (\vec{E} \cdot \vec{\nabla}) \vec{A}$ and integrate 2^{nd} term by parts

$$\hookrightarrow \vec{J} = \int d^3r \, \left[E^j \left(\vec{x} \times \vec{\nabla} \right) A^j + \left(\vec{x} \times \vec{A} \right) \vec{\nabla} \cdot \vec{E} + \vec{E} \times \vec{A} \right]$$

• drop 2^{nd} term (eq. of motion $\vec{\nabla} \cdot \vec{E} = 0$), yielding $\vec{J} = \vec{L} + \vec{S}$ with

$$\vec{L} = \int d^3 r \, E^j \left(\vec{x} \times \vec{\nabla} \right) A^j \qquad \vec{S} = \int d^3 r \, \vec{E} \times \vec{A}$$

• note: \vec{L} and \vec{S} not separately gauge invariant

example: angular momentum in QED with electrons

$$\begin{split} \vec{J}_{\gamma} &= \int d^3 r \, \vec{r} \times \left(\vec{E} \times \vec{B} \right) = \int d^3 r \, \vec{x} \times \left[\vec{E} \times \left(\vec{\nabla} \times \vec{A} \right) \right] \\ &= \int d^3 r \, \left[E^j \left(\vec{r} \times \vec{\nabla} \right) A^j - \vec{r} \times (\vec{E} \cdot \vec{\nabla}) \vec{A} \right] \\ &= \int d^3 r \, \left[E^j \left(\vec{r} \times \vec{\nabla} \right) A^j + \left(\vec{r} \times \vec{A} \right) \vec{\nabla} \cdot \vec{E} + \vec{E} \times \vec{A} \right] \end{split}$$

▶ replace 2^{nd} term (eq. of motion $\vec{\nabla} \cdot \vec{E} = ej^0 = e\psi^{\dagger}\psi$), yielding

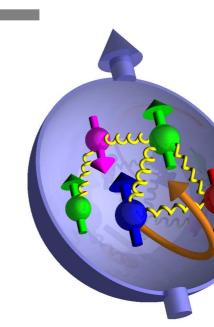
$$\vec{J}_{\gamma} = \int d^3r \left[\psi^{\dagger} \vec{r} \times e \vec{A} \psi + E^j \left(\vec{x} \times \vec{\nabla} \right) A^j + \vec{E} \times \vec{A} \right]$$

• $\psi^{\dagger}\vec{r} \times e\vec{A}\psi$ cancels similar term in electron OAM $\psi^{\dagger}\vec{r} \times (\vec{p}-e\vec{A})\psi$

 \leftrightarrow decomposing \vec{J}_{γ} into spin and orbital also shuffles angular momentum from photons to electrons!

Outline

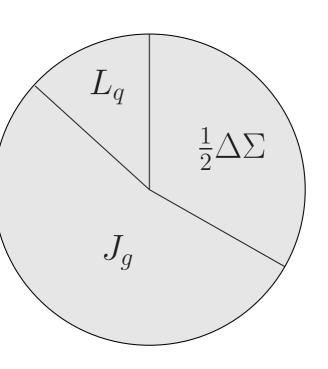
- Ji decomposition
- Jaffe decomposition
- recent lattice results (Ji decomposition)
- model/QED illustrations for Ji v. Jaffe
- Chen-Goldman decomposition

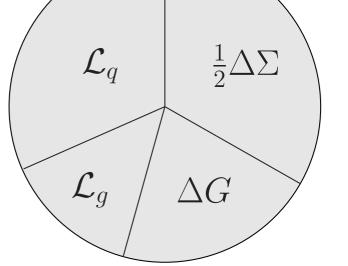


The nucleon spin pizza(s)

Ji

Jaffe & Manohar





'pizza tre stagioni'

'pizza quattro stagioni'

• only $\frac{1}{2}\Delta\Sigma \equiv \frac{1}{2}\sum_{q}\Delta q$ common to both decompositions! GPDs as a (cool) tool to study nucleon structure – p.27/48

Ji-decomposition

Ji (1997)

$$\frac{1}{2} = \sum_{q} J_q + J_g = \sum_{q} \left(\frac{1}{2}\Delta q + \mathbf{L}_q\right) + J_g$$

with ($P^{\mu}=(M,0,0,1)$, $S^{\mu}=(0,0,0,1)$)

$$\frac{1}{2}\Delta q = \frac{1}{2}\int d^3x \langle P, S | q^{\dagger}(\vec{x})\Sigma^3 q(\vec{x}) | P, S \rangle \qquad \Sigma^3 = i\gamma^1\gamma^2$$
$$L_q = \int d^3x \langle P, S | q^{\dagger}(\vec{x}) \left(\vec{x} \times i\vec{D}\right)^3 q(\vec{x}) | P, S \rangle$$
$$J_g = \int d^3x \langle P, S | \left[\vec{x} \times \left(\vec{E} \times \vec{B}\right)\right]^3 | P, S \rangle$$

 L_q

 J_g

 $\frac{1}{2}\Delta\Sigma$

Ji-decomposition

applies to each vector component of nucleon angular momentum, but Ji-decomposition usually applied only to \hat{z} component where at least <u>quark spin</u> has parton interpretation as difference between number densities

- Δq from polarized DIS
- $J_q = \frac{1}{2}\Delta q + L_q$ from exp/lattice (GPDs)
- L_q in principle independently defined as matrix elements of $q^{\dagger} \left(\vec{r} \times i \vec{D} \right) q$, but in practice easier by subtraction $L_q = J_q \frac{1}{2}\Delta q$
- J_g in principle accessible through gluon GPDs, but in practice easier by subtraction $J_g = \frac{1}{2} J_q$
- Ji makes no further decomposition of J_g into intrinsic (spin) and extrinsic (OAM) piece

 L_q

 J_q

 $\frac{1}{2}\Delta\Sigma$

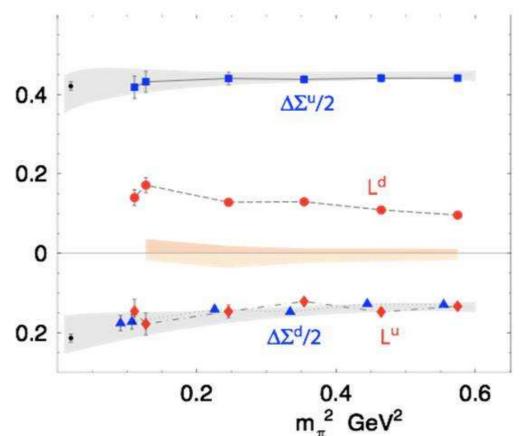
L_q for proton from Ji-relation (lattice)

- lattice QCD \Rightarrow moments of GPDs (LHPC; QCDSF)
- insert in Ji-relation \hookrightarrow

$$\left\langle J_q^i \right\rangle = S^i \int dx \left[H_q(x,0) + E_q(x,0) \right] x.$$

$$\hookrightarrow \ L_q^z = J_q^z - \frac{1}{2}\Delta q$$

- L_u , L_d both large!
- present calcs. show $L_u + L_d \approx 0$, but
 - disconnected diagrams ..?
- contributions to nucleon spin m_{π}^2 extrapolation
 - parton interpret. of L_q ...



GPDs as a (cool) tool to study nucleon structure – p.30/48

Jaffe/Manohar decomposition

In light-cone framework & light-cone gauge $A^+ = 0 \text{ one finds for } J^z = \int dx^- d^2 \mathbf{r}_\perp M^{+xy}$

$$\Sigma_q \mathcal{L}_q \qquad \frac{1}{2}\Delta\Sigma$$

$$\mathcal{L}_g \qquad \Delta G$$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \sum_{q} \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$$

where ($\gamma^+ = \gamma^0 + \gamma^z$)

$$\mathcal{L}_{q} = \int d^{3}r \langle P, S | \bar{q}(\vec{r})\gamma^{+} \left(\vec{r} \times i\vec{\partial}\right)^{z} q(\vec{r}) | P, S \rangle$$
$$\Delta G = \varepsilon^{+-ij} \int d^{3}r \langle P, S | \operatorname{Tr} F^{+i} A^{j} | P, S \rangle$$
$$\mathcal{L}_{g} = 2 \int d^{3}r \langle P, S | \operatorname{Tr} F^{+j} \left(\vec{x} \times i\vec{\partial}\right)^{z} A^{j} | P, S \rangle$$

Jaffe/Manohar decomposition

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \sum_{q} \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$$

- $\Delta \Sigma = \sum_q \Delta q$ from polarized DIS (or lattice)
- ΔG from $\overrightarrow{p} \overleftarrow{p}$ or polarized DIS (evolution)
- $\hookrightarrow \Delta G$ gauge invariant, but local operator only in light-cone gauge
- ∫ $dxx^n \Delta G(x)$ for $n \ge 1$ can be described by manifestly gauge inv.
 local op. (→ lattice)
- $\mathcal{L}_q, \mathcal{L}_g$ independently defined, but
 - no exp. identified to access them
 - not accessible on lattice, since nonlocal except when $A^+ = 0$
- Parton net OAM $\mathcal{L} = \mathcal{L}_g + \sum_q \mathcal{L}_q$ by subtr. $\mathcal{L} = \frac{1}{2} \frac{1}{2}\Delta\Sigma \Delta G$
- $In general, \mathcal{L}_q \neq L_q \qquad \qquad \mathcal{L}_g + \Delta G \neq J_g$
- makes no sense to 'mix' Ji and JM decompositions, e.g. $J_g \Delta G$ has no fundamental connection to OAM

 $\sum_{q} \mathcal{L}_{q}$

 \mathcal{L}_{g}

 $\frac{1}{2}\Delta\Sigma$

 ΔG

 $L_a \neq \mathcal{L}_q$

 L_q matrix element of

$$q^{\dagger} \left[\vec{r} \times \left(i \vec{\partial} - g \vec{A} \right) \right]^{z} q = \bar{q} \gamma^{0} \left[\vec{r} \times \left(i \vec{\partial} - g \vec{A} \right) \right]^{z} q$$

$$\bar{q}\gamma^{+}\left[\vec{r}\times i\vec{\partial}\right]^{z}q\Big|_{A^{+}=0}$$

- (for $\vec{p} = 0$) matrix element of $\bar{q}\gamma^{z} \left[\vec{r} \times \left(i\vec{\partial} g\vec{A}\right)\right]^{z} q$ vanishes (parity!)
- $\hookrightarrow L_q$ identical to matrix element of $\bar{q}\gamma^+ \left[\vec{r} \times \left(i\vec{\partial} g\vec{A}\right)\right]^z q$ (nucleon at rest)
- \hookrightarrow even in light-cone gauge, L_q^z and \mathcal{L}_q^z still differ by matrix element of $q^{\dagger} \left(\vec{r} \times g \vec{A} \right)^z q \Big|_{A^+=0} = q^{\dagger} \left(x g A^y - y g A^x \right) q \Big|_{A^+=0}$

Summary part 1:

• Ji:
$$J^z = \frac{1}{2}\Delta\Sigma + \sum_q \frac{L_q}{L_q} + J_g$$

- $Iaffe: J^z = \frac{1}{2}\Delta\Sigma + \sum_q \mathcal{L}_q + \Delta G + \mathcal{L}_g$
- ΔG can be defined without reference to gauge (and hence gauge invariantly) as the quantity that enters the evolution equations and/or $\overrightarrow{p} \overleftarrow{p}$
- → represented by simple (i.e. local) operator only in LC gauge and corresponds to the operator that one would naturally identify with 'spin' only in that gauge
- In general $L_q \neq \mathcal{L}_q$ or $J_g \neq \Delta G + \mathcal{L}_g$, but
- how significant is the difference between L_q and \mathcal{L}_q , etc. ?

OAM in scalar diquark model

[M.Burkardt + H.BC, PRD **79**, 071501 (2009)]

- toy model for nucleon where nucleon (mass M) splits into quark (mass m) and scalar 'diquark' (mass λ)
- → light-cone wave function for quark-diquark Fock component

$$\psi_{\pm\frac{1}{2}}^{\uparrow}(x,\mathbf{k}_{\perp}) = \left(M + \frac{m}{x}\right)\phi \qquad \psi_{\pm\frac{1}{2}}^{\uparrow} = -\frac{k^{1} + ik^{2}}{x}\phi$$

with
$$\phi = \frac{c/\sqrt{1-x}}{M^2 - \frac{\mathbf{k}_{\perp}^2 + m^2}{x} - \frac{\mathbf{k}_{\perp}^2 + \lambda^2}{1-x}}$$
.

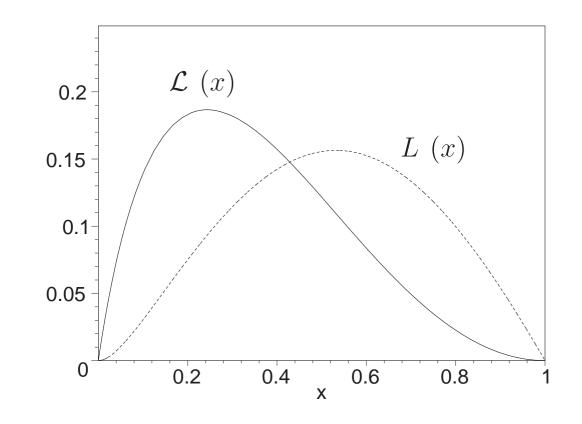
- quark OAM according to JM: $\mathcal{L}_q = \int_0^1 dx \int \frac{d^2 \mathbf{k}_\perp}{16\pi^3} (1-x) \left| \psi_{-\frac{1}{2}}^{\uparrow} \right|^2$
- quark OAM according to Ji: $L_q = \frac{1}{2} \int_0^1 dx \, x \left[q(x) + E(x,0,0) \right] \frac{1}{2} \Delta q$
- → (using Lorentz inv. regularization, such as Pauli Villars subtraction) both give identical result, i.e. $L_q = \mathcal{L}_q$

not surprising since scalar diquark model is <u>not</u> a gauge theory

OAM in scalar diquark model

But, even though $L_q = \mathcal{L}_q$ in this non-gauge theory

$$\mathcal{L}_{q}(x) \equiv \int \frac{d^{2}\mathbf{k}_{\perp}}{16\pi^{3}} (1-x) \left| \psi_{-\frac{1}{2}}^{\uparrow} \right|^{2} \neq \frac{1}{2} \left\{ x \left[q(x) + E(x,0,0) \right] - \Delta q(x) \right\} \equiv L_{q}(x)$$



 \hookrightarrow 'unintegrated Ji-relation' does <u>not</u> yield x-distribution of OAM

OAM in QED

light-cone wave function in $e\gamma$ Fock component

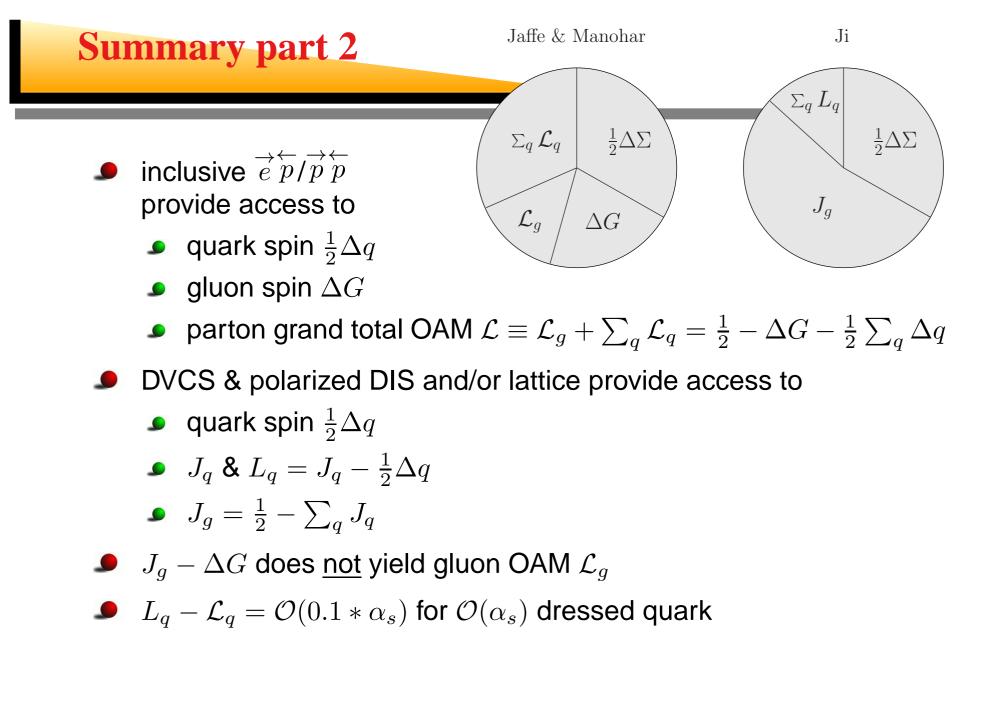
$$\Psi_{\pm\frac{1}{2}\pm1}^{\uparrow}(x,\mathbf{k}_{\perp}) = \sqrt{2}\frac{k^{1}-ik^{2}}{x(1-x)}\phi \qquad \Psi_{\pm\frac{1}{2}-1}^{\uparrow}(x,\mathbf{k}_{\perp}) = -\sqrt{2}\frac{k^{1}+ik^{2}}{1-x}$$
$$\Psi_{-\frac{1}{2}\pm1}^{\uparrow}(x,\mathbf{k}_{\perp}) = \sqrt{2}\left(\frac{m}{x}-m\right)\phi \qquad \Psi_{-\frac{1}{2}-1}^{\uparrow}(x,\mathbf{k}_{\perp}) = 0$$

- OAM of e^- according to Jaffe/Manohar $\mathcal{L}_e = \int_0^1 dx \int d^2 \mathbf{k}_{\perp} (1-x) \left[\left| \Psi_{+\frac{1}{2}-1}^{\uparrow}(x,\mathbf{k}_{\perp}) \right|^2 - \left| \Psi_{+\frac{1}{2}+1}^{\uparrow}(x,\mathbf{k}_{\perp}) \right|^2 \right]$
- e^- OAM according to Ji $L_e = \frac{1}{2} \int_0^1 dx \, x \left[q(x) + E(x, 0, 0) \right] \frac{1}{2} \Delta q$ $\rightsquigarrow \mathcal{L}_e = L_e + \frac{\alpha}{4\pi} \neq L_e$
- Likewise, computing J_{γ} from photon GPD, and $\Delta \gamma$ and \mathcal{L}_{γ} from light-cone wave functions and defining $\hat{L}_{\gamma} \equiv J_{\gamma} \Delta \gamma$ yields $\hat{L}_{\gamma} = \mathcal{L}_{\gamma} + \frac{\alpha}{4\pi} \neq \mathcal{L}_{\gamma}$

• $\frac{\alpha}{4\pi}$ appears to be small, but here \mathcal{L}_e , L_e are all of $\mathcal{O}(\frac{\alpha}{\pi})$

OAM in QCD

- \rightarrow 1-loop QCD: $\mathcal{L}_q L_q = \frac{\alpha_s}{3\pi}$ (for $j_z = +\frac{1}{2}$)
- recall (lattice QCD): $L_u \approx -.15$; $L_d \approx +.15$
- QCD evolution yields negative correction to L_u and positive correction to L_d
- \leftrightarrow evolution suggested (A.W.Thomas) to explain apparent discrepancy between quark models (low Q^2) and lattice results $(Q^2 \sim 4GeV^2)$
- \blacksquare above result suggests that $\mathcal{L}_u > L_u$ and $\mathcal{L}_d < L_d$
- additional contribution (with same sign) from vector potential due to spectators (MB, to be published)
- \hookrightarrow possible that lattice result consistent with $\mathcal{L}_u > \mathcal{L}_d$



pizza tre e mezzo stagioni

$$\mathbf{A} = \mathbf{A}_{pure} + \mathbf{A}_{phys} \quad \text{with} \quad \nabla \cdot \mathbf{A}_{phys} = 0 \quad \nabla \times \mathbf{A}_{pure} = 0$$
$$\mathbf{I}_{\frac{1}{2}} = \sum_{q} J_{q} + J_{g} = \sum_{q} \left(\frac{1}{2}\Delta q + L'_{q}\right) + S'_{g} + L'_{g} \text{ with } \Delta q \text{ as in JM/Ji}$$

$$L'_{q} = \int d^{3}x \langle P, S | q^{\dagger}(\vec{x}) \left(\vec{x} \times i \vec{D}_{pure} \right)^{3} q(\vec{x}) | P, S \rangle$$

$$S'_{g} = \int d^{3}x \langle P, S | \left(\vec{E} \times \vec{A}_{phys} \right)^{3} | P, S \rangle$$

$$L'_{g} = \int d^{3}x \langle P, S | E^{i} \left(\vec{x} \times \vec{\nabla} \right)^{3} A^{i}_{phys} | P, S \rangle$$

$$I \vec{D}_{pure} = i \vec{\partial} - g \vec{A}_{pure}$$

• only $\frac{1}{2}\Delta q$ accessible experimentally

example: angular momentum in QED

consider now, QED <u>with</u> electrons:

$$\vec{J}_{\gamma} = \int d^3 r \, \vec{x} \times \left(\vec{E} \times \vec{B} \right) = \int d^3 r \, \vec{x} \times \left[\vec{E} \times \left(\vec{\nabla} \times \vec{A} \right) \right]$$

integrate by parts

$$\vec{J} = \int d^3r \, \left[E^j \left(\vec{x} \times \vec{\nabla} \right) A^j + \left(\vec{x} \times \vec{A} \right) \vec{\nabla} \cdot \vec{E} + \vec{E} \times \vec{A} \right]$$

replace 2^{nd} term (eq. of motion $\vec{\nabla} \cdot \vec{E} = ej^0 = e\psi^{\dagger}\psi$), yielding

$$\vec{J}_{\gamma} = \int d^3r \left[\psi^{\dagger} \vec{r} \times e \vec{A} \psi + E^j \left(\vec{x} \times \vec{\nabla} \right) A^j + \vec{E} \times \vec{A} \right]$$

pizza tre e mezzo stagioni

Chen, Goldman et al.: integrate by parts in J_g only for term involving A_{pure} , where

$$\mathbf{A} = \mathbf{A}_{pure} + \mathbf{A}_{phys}$$
 with $\nabla \cdot \mathbf{A}_{phys} = 0$ $\nabla \times \mathbf{A}_{pure} = 0$

B.L.T. pizza?

- Bakker, Leader, Trueman:
- JM only applies for $\mathbf{s} = \hat{\mathbf{p}}$ (helicity sum rule)
- Ji applies to any component, but parton interpretation only for S_z
- For $\mathbf{p} \neq 0$, Ji only applies to helicity
- 'sum rule' $\mathbf{s} \perp \hat{\mathbf{p}}$

$$\frac{1}{2} = \frac{1}{2} \sum_{a \in q, \bar{q}} \int dx h_1^a(x) + \sum_{a \in q, \bar{q}, g} \langle L_{s_T}^a \rangle$$

where $L^a_{s_T}$ component of \mathbf{L}^a along \mathbf{s}_T

- note: $\sum_{a \in q, \bar{q}} \int dx h_1^a(x)$ <u>not</u> tensor charge (latter is: ' $q \bar{q}$ ')
- distinction between transversity and transverse spin obscure in two-component formalism used

B.L.T. pizza ?

- $\textbf{9} \quad \textbf{`B.L.T. sum rule' s} \perp \hat{\mathbf{p}} \\ \frac{1}{2} = \frac{1}{2} \sum_{a \in q, \bar{q}} \int dx h_1^a(x) + \sum_{a \in q, \bar{q}, s} \langle L_{s_T}^a \rangle$
- should already be suspicious as $T^{\mu\nu}$ is chirally even ($m_q = 0$) and so should \vec{J} ...
- studies (diquark model) under way to test B.L.T. ...

(Grand) Summary

- **GPDs** $\stackrel{FT}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $E(x, 0, -\Delta_{\perp}^2) \longrightarrow \bot$ deformation of PDFs for \bot polarized target
- **•** DVCS at fixed $Q^2 \leftrightarrow GPDs(\xi, \xi, t), \Delta(t)$
- Fourier transform of GPDs w.r.t. Δ_{\perp} provides dependence of overlap matrix element on $\frac{1-x}{1-\zeta}\mathbf{r}_{\perp}$ where \mathbf{r}_{\perp} is separation between active quark and the COM of spectators
- → for $x = \zeta$, variable conjugate to Δ_{\perp} is \mathbf{r}_{\perp} (note: *t*-slope = $(1 - \zeta) \times \Delta_{\perp}^2$ -slope)