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Probabilistic interpretation of GPDs as Fourier
trafo of impact parameter dependent PDFs

H(x, 0,−∆2
⊥) −→ q(x,b⊥)

H̃(x, 0,−∆2
⊥) −→ ∆q(x,b⊥)

E(x, 0,−∆2
⊥) −→ ⊥ distortion of PDFs when the

target is ⊥ polarized
DVCS

?
 GPDs

GPDs for x = ξ

What is orbital angular momentum?

Summary
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Deeply Virtual Compton Scattering (DVCS)

virtual Compton scattering: γ∗p −→ γp (actually: e−p −→ e−γp)

‘deeply’: −q2γ ≫M2
p , |t| −→ Compton amplitude dominated by

(coherent superposition of) Compton scattering off single quarks

→֒ only difference between form factor (a) and DVCS amplitude (b) is
replacement of photon vertex by two photon vertices connected
by quark (energy denominator depends on quark momentum
fraction x)

→֒ DVCS amplitude provides access to momentum-decomposition of
form factor = Generalized Parton Distribution (GPDs).

γ∗ γγ∗

(a) (b)

...
...
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Generalized Parton Distributions (GPDs)

GPDs: decomposition of form factors at a given value of t, w.r.t. the
average momentum fraction x = 1

2 (xi + xf ) of the active quark

∫

dxHq(x, ξ, t) = F
q
1 (t)

∫

dxH̃q(x, ξ, t) = G
q
A(t)

∫

dxEq(x, ξ, t) = F
q
2 (t)

∫

dxẼq(x, ξ, t) = G
q
P (t),

xi and xf are the momentum fractions of the quark before and
after the momentum transfer
2ξ = xf − xi

GPDs can be probed in deeply virtual Compton scattering (DVCS)

γ∗ γγ∗

...
...
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Generalized Parton Distributions (GPDs)

DVCS amplitude

ADVCS(ξ, t) ∼
∫ 1

−1

dx

x− ξ + iε
GPD(x, ξ, t)

in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs
must reduce to the ordinary PDFs:

Hq(x, 0, 0) = q(x) H̃q(x, 0, 0) = ∆q(x).
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Impact parameter dependent PDFs

define ⊥ localized state [D.Soper,PRD15, 1141 (1977)]

∣

∣p+,R⊥ = 0⊥, λ
〉

≡ N
∫

d2p⊥
∣

∣p+,p⊥, λ
〉

Note: ⊥ boosts in IMF form Galilean subgroup⇒ this state has
R⊥ ≡ 1

P+

∫

dx−d2x⊥ x⊥T
++(x) =

∑

i xiri,⊥ = 0⊥
(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

q(x,b⊥) ≡
∫

dx−

4π

〈

p+,R⊥ = 0⊥
∣

∣ q̄(−x
−

2
,b⊥)γ

+q(
x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥
〉

eixp
+x−

→֒ q(x,b⊥) =
∫

d2
∆⊥

(2π)2 e
i∆⊥·b⊥H(x, 0,−∆2

⊥),

∆q(x,b⊥) =
∫

d2
∆⊥

(2π)2 e
i∆⊥·b⊥H̃(x, 0,−∆2

⊥),
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Impact parameter dependent PDFs

No relativistic corrections (Galilean subgroup!)

→֒ corrolary: interpretation of 2d-FT of F1(Q
2) as charge density in

transverse plane also free from relativistic corrections

q(x,b⊥) has probabilistic interpretation as number density
(∆q(x,b⊥) as difference of number densities)

ξ = 0 essential for probabilistic interpretation

〈

p+′, 0⊥
∣

∣ b†(x,b⊥)b(x,b⊥)
∣

∣p+, 0⊥
〉

∼
∣

∣b(x,b⊥)〉|p+, 0⊥
∣

∣

2

works only for p+ = p+′

Reference point for IPDs is transverse center of (longitudinal)
momentum R⊥ ≡

∑

i xiri,⊥

→֒ for x→ 1, active quark ‘becomes’ COM, and q(x,b⊥) must
become very narrow (δ-function like)

→֒ H(x, 0,−∆2
⊥) must become ∆⊥ indep. as x→ 1 (MB, 2000)

→֒ consistent with lattice results for first few momentsGPDs as a (cool) tool to study nucleon structure – p.7/48
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x = 0.3
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x = 0.1

q(x,b⊥) for unpol. p
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x = momentum fraction of the quark

~b =⊥ position of the quark

unpolarized p (MB,2000)
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x = 0.5x = 0.5

x = 0.3x = 0.3

bx

by

bx

by

bx

by

bx

by

bx

by

bx

by

x = 0.1

u(x,b⊥) d(x,b⊥)

~pγ
ẑ

ŷ
jz > 0

jz < 0

p polarized in +x̂ direction (MB,2003)

photon interacts more strongly with
quark currents that point in direction
opposite to photon momentum

→֒ sideways shift of quark distributions

sign & magnitude of shift (model-
independently) predicted to be re-
lated to the proton/neutron anoma-
lous magnetic moment!
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x = 0.5x = 0.5

x = 0.3x = 0.3

bx

by

bx

by

bx

by

bx

by

bx

by

bx

by

x = 0.1

u(x,b⊥) d(x,b⊥)

~pγ
ẑ

ŷ
jz > 0

jz < 0

p polarized in +x̂ direction

lattice results (QCDSF)
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Accessing GPDs in DVCS

ADV CS(ξ, t) −→
∫ 1

−1 dx
GPD(+)(x,ξ,t)

x−ξ+iε

ξ longitudinal mometum transfer on the target ξ = p+′−p+

p+′+p+

x (average) momentum fraction of the active quark x = k+′+p+

p+′+p+

ℑADV CS(ξ, t) −→ GPD(+)(ξ, ξ, t)

only sensitive to ‘diagonal’ x = ξ

limited ξ range

−t = 4ξ2M2 +∆2
⊥

1− ξ2

→֒ −tmin = 4ξ2M2

1−ξ2 or ξmax for given value of −t

ℜADV CS(ξ, t) −→
∫ 1

−1 dx
GPD(+)(x,ξ,t)

x−ξ probes GPDs off the
diagonal, but ...
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Polynomiality & the D-term

Lorentz invariance⇒ polynomiality (n odd)

∫ 1

0

dxxnGPD(+)(x, ξ, t) = Bn0(t)+Bn2(t)ξ
2+Bn4(t)ξ

4+..+Bn,n+1(t)ξ
n+1

Consider in the following only charge-even GPDs, e.g.
H(+)(x, ξ, t) ≡ H(x, ξ, t)−H(−x, ξ, t) but drop superscript (+)

→֒ Polynomiality highly constrains possible functional form of GPDs
and plays crucial role in ‘deconvolution’ of the DVCS amplitude

original ‘double distribution’ representation for GPDs (Radyushkin)
manifestly satisfied polynomiality, but without Bn,n+1-term

‘D-term’ (Polyakov & Weiss) added to allow for highest power of ξ

H(x, ξ, t) = HDD(x, ξ, t) + Θ(ξ2 − x2)D
(

x

ξ
, t

)
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Polynomiality & the D-term

‘D-term’ (Polyakov & Weiss) added to allow for highest power of ξ

H(x, ξ, t) = HDD(x, ξ, t) + Θ(ξ2 − x2)D
(

x

ξ
, t

)

D-term contributes only to real part of DVCS amplitude, with

‘D-form factor’ ∆(t) =
∫ 1

0
dz

D(z,t)
1−z

ℜA(ξ, t) =
∫ 1

0

dx
H+

DD(x, ξ, t)

x− ξ +∆(t)

For fixed x, contribution of D-term to H(x, ξ, t) disappears as
ξ → 0, but δ(x)-like contribution to Compton Amplitude

lim
ξ→0

H(x, ξ, t)

x− ξ =
HDD(x, 0, t)

x
+ δ(x)∆(t)

More recently (Anikin & Teryaev): ∆ arises as
subtraction-constant in dispersion relation for DVCS amplitude
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A(ξ, t)←→ GPD(+)(ξ, ξ, t), ∆(t)

(Anikin & Teryaev): ∆ arises as subtraction-constant in dispersion
relation for DVCS amplitude

ℜA(ν, t) = ν2

π

∫ ∞

0

dν′2

ν′2
ℑA(ν′, t)
ν′2 − ν2 +∆(t)

In combination with LO factorization (A =
∫ 1

−1 dx
H(x,ξ,t)
x−ξ+iε )

ℜA(ξ, t) =
∫ 1

−1
dx
H(x, ξ, t)

x− ξ =

∫ 1

−1
dx
H(x, x, t)

x− ξ +∆(t)

earlier derived from polynomiality
(Goeke,Polyakov,Vanderhaeghen)

→֒ Possible to ‘condense’ information A(ξ, t)↔
{

GPD(ξ, ξ, t)

∆(t)contained in ADV CS (fixed Q2,
assuming leading twist factorization)
into GPD(x, x, t) & ∆(t)

GPDs as a (cool) tool to study nucleon structure – p.14/48



A(ξ, t)←→ GPD(ξ, ξ, t), ∆(t)

ℜA(ξ, t) =
∫ 1

−1 dx
H(x,ξ,t)

x−ξ probes GPDs for x 6= ξ, but new

information
using polynomiality/dispersion relation, DVCS information on
GPDs (fixed Q2) can be ‘projected back’ onto diagonal plus
D-term!

→֒ better to fit parameterizations for GPD(x, x, t) plus ∆(t) to
ADVCS rather than parameterizations for GPD(x, ξ, t)?

even after ‘projecting back’ onto GPD(x, x, t), ℜA(ξ, t) still
provides new (not in ℑA) info on GPDs:

D-form factor

constraints from
∫

dx
GPD(x,x,t)

x−ξ on GPD(ξ, ξ, t) in

kinematically inaccessible range −t ≤ −t0 ≡ 4M2ξ2

1−ξ2

good news for model builders: as long as a model fits ℑA(ξ, t), it
should also do well for ℜA(ξ, t), provided

model has polynomility
allows for a D-form factor GPDs as a (cool) tool to study nucleon structure – p.15/48



A(ξ, t)←→ GPD(ξ, ξ, t), ∆(t)

trivial solution:
HDD(x, ξ, t) ≡ H(x, x, t)

plus suitable ∆(t) will
fit DVCS data
satisfy polynomiality (trivially!)
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Application of
∫ 1

−1 dx
H(x,ξ,t)
x−ξ =

∫ 1

−1 dx
H(x,x,t)
x−ξ +∆(t)

take ξ → 0 (should exist for −t sufficiently large)

∫ 1

−1
dx
H(+)(x, 0, t)

x
=

∫ 1

−1
dx
H(+)(x, x, t)

x
+∆(t)

→֒ DVCS allows access to same generalized form factor
∫ 1

−1 dx
H(+)(x,0,t)

x also available in WACS (wide angle Compton

scattering), but t does not have to be of order Q2

→֒ after flavor separation, 1
F1(t)

∫ 1

−1 dx
H(+)(x,0,t)

x at large t provides

information about the ‘typical x’ that dominates large t form factor
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GPDs for x = ξ

examples for interesting physics that can be extracted from GPDs:

impact parameter dependent PDFs

q(x,b⊥) =
∫

d2
∆⊥

(2π)2 e
i∆⊥·b⊥H(x, 0,−∆2

⊥)

→֒ ξ needs to be zero

Ji: 〈 ~Jq〉~S = ~S
∫

dxx [H(x, ξ, 0) + E(x, ξ, 0)]

→֒ ξ can be arbitrary but fixed value

DVCS experiments provide information about:

GPDs(ξ, ξ, t) directly from imaginary part of DVCS amplitude
∫

dx
x±ξGPDs(x, ξ, t) from real part, which is probably dominated by

vicinity x ≈ ξ
additional constraints from PDFs, form factors, positivity,
polynomiality, evolution, ...

until GPDs have been globally gegenbauered to the point where
x− ξ dependence has been disentangled, what can we learn from
GPDs(ξ, ξ, t) ? GPDs as a (cool) tool to study nucleon structure – p.18/48



Overlap Representation for GPDs (x > ζ)

1 − ζ

..

1

1 − ζ

ζ0
×

GPD(x, ζ, t)=
∑

n,λi

(1− ζ)1−n
2

∫ n
∏

i=1

dxidk⊥,i
16π3

16π3δ



1−
n
∑

j=1

xj



δ





n
∑

j=1

k⊥j



δ(x− x1)

×ψs′

(n)(x
′
i,k
′
⊥i, λi)

∗ψs
(n)(xi,k⊥i, λi),

GPD(x, ζ, t) =
√
1−ζ

1− ζ

2

H(x, ζ, t)− ζ2

4(1− ζ
2 )
√
1−ζE(x, ζ, t), for s′ = s

GPD(x, ζ, t) = 1√
1−ζ

∆1−i∆2

2M E(x, ζ, t), for s′ =↑ and s =↓

∆ is the transverse momentum transfer.

x′1 = x1−ζ
1−ζ and k′⊥1 = k⊥1 − 1−x1

1−ζ ∆⊥ for the active quark, and

x′i =
xi

1−ζ and k′⊥i = k⊥i +
xi

1−ζ∆⊥ for the spectators i = 2, ..., n.
GPDs as a (cool) tool to study nucleon structure – p.19/48



GPDs in ⊥ position space (n = 2)

GPD(x, ζ, t) =
∑

λi

∫

dk⊥,1
16π3

ψs′(x′1,k
′
⊥1, λi)

∗ψs(x1,k⊥1, λi),

x′1 = x1−ζ
1−ζ and k′⊥1 = k⊥1 − 1−x1

1−ζ ∆⊥ for the active quark

spectator momentum constrained by momentum conservation:
x2 = 1− x1 and k⊥2 = −k⊥1

Diagonalize by Fourier transform

ψ̃s(x, r⊥) =
∫

d2
k⊥

2π ψs(x,k⊥)e
ik⊥·r⊥

r⊥ is the ⊥ distance between active quark and spectator

→֒ GPD(x, ζ, t) ∝
∫

d2r⊥ψ̃
∗(x′, r⊥)ψ̃

∗(x′, r⊥)e
−i 1−x

1−ζ
r⊥·∆⊥
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GPDs in ⊥ position space (general case)

repeating the same steps in the general case (n ≥ 3) yields.......

GPD(x, ζ, t) =
∑

n

(1− ζ)1−n
2

∫ n
∏

i=1

d2r⊥i
2π

ψ̃(n)(x
′
i, r⊥i)

∗ψ̃s
(n)(xi, r⊥i)e

−i 1−x
1−ζ

(r⊥1−R⊥s)·∆⊥

R⊥s is the center of momentum of the spectators.

→֒ FT of GPD w.r.t. ∆⊥ gives overlap when active quark and
spectators are distance 1−x

1−ζ r⊥ apart
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GPDs in ⊥ position space (general case)

general case: ∆⊥ conjugate to 1−x
1−ζ r⊥

special case: ζ = 0 ⇒ 1−x
1−ζ r⊥ = (1− x)r⊥ = b⊥ = distance

between active quark and center of momentum of hadron.

special case: x = ζ ⇒ 1−x
1−ζ r⊥ = r⊥

→֒ for x = ζ, the variable that is (Fourier) conjugate to ∆⊥ is the
distance between the active quark and the center of momentum of
the spectators r⊥

unlike the b⊥ distribution, which must become point-like for x→ 1,
the r⊥-distribution does not have to become narrow for x→ 1

Note: the t-slope still has to go to zero as ζ → 1, as

−t = ζ2M2 +∆⊥
2

1− ζ

→֒ t-slope B and ∆2
⊥-slope B⊥ related via B = (1− ζ)B⊥
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Motivation

polarized DIS: only ∼ 30% of the proton spin due to quark spins

→֒ ‘spin crisis’−→ ‘spin puzzle’, because ∆Σ much
smaller than the quark model result ∆Σ = 1

→֒ quest for the remaining 70%

quark orbital angular momentum (OAM)
gluon spin
gluon OAM

→֒ How are the above quantities defined?

→֒ How can the above quantities be measured

GPDs as a (cool) tool to study nucleon structure – p.23/48



example: angular momentum in QED

consider, for simplicity, first QED without electrons:

~J =

∫

d3r ~x×
(

~E × ~B
)

=

∫

d3r ~x×
[

~E ×
(

~∇× ~A
)]

use ~E ×
(

~∇× ~A
)

= Ej ~∇Aj −
(

~E · ~∇
)

~A and integrate 2nd term

by parts

→֒ ~J =

∫

d3r
[

Ej
(

~x× ~∇
)

Aj +
(

~x× ~A
)

~∇ · ~E + ~E × ~A
]

drop 2nd term (eq. of motion ~∇ · ~E = 0), yielding ~J = ~L+ ~S with

~L =

∫

d3r Ej
(

~x× ~∇
)

Aj ~S =

∫

d3r ~E × ~A

note: ~L and ~S not separately gauge invariant
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example: angular momentum in QED with electrons

~Jγ =

∫

d3r ~r ×
(

~E × ~B
)

=

∫

d3r ~x×
[

~E ×
(

~∇× ~A
)]

=

∫

d3r
[

Ej
(

~r × ~∇
)

Aj − ~r × ( ~E · ~∇) ~A
]

=

∫

d3r
[

Ej
(

~r × ~∇
)

Aj +
(

~r × ~A
)

~∇ · ~E + ~E × ~A
]

replace 2nd term (eq. of motion ~∇ · ~E = ej0 = eψ†ψ), yielding

~Jγ =

∫

d3r
[

ψ†~r × e ~Aψ + Ej
(

~x× ~∇
)

Aj + ~E × ~A
]

ψ†~r × e ~Aψ cancels similar term in electron OAM ψ†~r × (~p−e ~A)ψ
→֒ decomposing ~Jγ into spin and orbital also shuffles angular

momentum from photons to electrons!
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Outline

Ji decomposition

Jaffe decomposition

recent lattice results (Ji decomposition)

model/QED illustrations for Ji v. Jaffe

Chen-Goldman decomposition
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The nucleon spin pizza(s)

Ji Jaffe & Manohar

1
2∆Σ 1

2∆Σ

Jg
∆G

Lq

Lq

Lg

‘pizza tre stagioni’ ‘pizza quattro stagioni’

only 1
2∆Σ ≡ 1

2

∑

q ∆q common to both decompositions!
GPDs as a (cool) tool to study nucleon structure – p.27/48



Ji-decomposition
1
2∆Σ

Jg

Lq

Ji (1997)

1

2
=

∑

q

Jq + Jg =
∑

q

(

1

2
∆q + Lq

)

+ Jg

with (Pµ = (M, 0, 0, 1), Sµ = (0, 0, 0, 1))

1

2
∆q =

1

2

∫

d3x 〈P, S| q†(~x)Σ3q(~x) |P, S〉 Σ3 = iγ1γ2

Lq =

∫

d3x 〈P, S| q†(~x)
(

~x× i ~D
)3

q(~x) |P, S〉

Jg =

∫

d3x 〈P, S|
[

~x×
(

~E × ~B
)]3

|P, S〉

i ~D = i~∂ − g ~A

GPDs as a (cool) tool to study nucleon structure – p.28/48



Ji-decomposition
1
2∆Σ

Jg

Lq

~J =
∑

q
1
2q
†~Σq + q†

(

~r × i ~D
)

q + ~r ×
(

~E × ~B
)

applies to each vector component of nucleon
angular momentum, but Ji-decomposition usually
applied only to ẑ component where at least quark spin has
parton interpretation as difference between number densities

∆q from polarized DIS

Jq = 1
2∆q + Lq from exp/lattice (GPDs)

Lq in principle independently defined as matrix elements of

q†
(

~r × i ~D
)

q, but in practice easier by subtraction Lq = Jq − 1
2∆q

Jg in principle accessible through gluon GPDs, but in practice
easier by subtraction Jg = 1

2 − Jq
Ji makes no further decomposition of Jg into intrinsic (spin) and
extrinsic (OAM) piece

GPDs as a (cool) tool to study nucleon structure – p.29/48



Lq for proton from Ji-relation (lattice)

lattice QCD⇒ moments of GPDs (LHPC; QCDSF)

→֒ insert in Ji-relation

〈

J i
q

〉

= Si

∫

dx [Hq(x, 0) + Eq(x, 0)] x.

→֒ Lz
q = Jz

q − 1
2∆q

Lu, Ld both large!

present calcs. show
Lu + Ld ≈ 0, but

disconnected
diagrams ..?

m2
π extrapolation

parton interpret.
of Lq...
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Jaffe/Manohar decomposition
1
2∆Σ

∆G

∑
q Lq

Lg

in light-cone framework & light-cone gauge
A+ = 0 one finds for Jz =

∫

dx−d2r⊥M
+xy

1

2
=

1

2
∆Σ +

∑

q

Lq +∆G+ Lg

where (γ+ = γ0 + γz)

Lq =

∫

d3r 〈P, S| q̄(~r)γ+
(

~r × i~∂
)z

q(~r) |P, S〉

∆G = ε+−ij
∫

d3r 〈P, S|TrF+iAj |P, S〉

Lg = 2

∫

d3r 〈P, S|TrF+j
(

~x× i~∂
)z

Aj |P, S〉

GPDs as a (cool) tool to study nucleon structure – p.31/48



Jaffe/Manohar decomposition
1
2∆Σ

∆G

∑
q Lq

Lg

1

2
=

1

2
∆Σ +

∑

q

Lq +∆G+ Lg

∆Σ =
∑

q ∆q from polarized DIS (or lattice)

∆G from
→
p
←
p or polarized DIS (evolution)

→֒ ∆G gauge invariant, but local operator only in light-cone gauge
∫

dxxn∆G(x) for n ≥ 1 can be described by manifestly gauge inv.
local op. (−→ lattice)

Lq, Lg independently defined, but

no exp. identified to access them

not accessible on lattice, since nonlocal except when A+ = 0

parton net OAM L = Lg +
∑

q Lq by subtr. L = 1
2 − 1

2∆Σ−∆G

in general, Lq 6= Lq Lg +∆G 6= Jg

makes no sense to ‘mix’ Ji and JM decompositions, e.g. Jg −∆G

has no fundamental connection to OAM
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Lq 6= Lq

Lq matrix element of

q†
[

~r ×
(

i~∂ − g ~A
)]z

q = q̄γ0
[

~r ×
(

i~∂−g ~A
)]z

q

Lz
q matrix element of (γ+ = γ0 + γz)

q̄γ+
[

~r × i~∂
]z

q
∣

∣

∣

A+=0

(for ~p = 0) matrix element of q̄γz
[

~r ×
(

i~∂−g ~A
)]z

q vanishes

(parity!)

→֒ Lq identical to matrix element of q̄γ+
[

~r ×
(

i~∂−g ~A
)]z

q (nucleon

at rest)

→֒ even in light-cone gauge, Lz
q and Lz

q still differ by matrix element

of q†
(

~r × g ~A
)z

q
∣

∣

∣

A+=0
= q† (xgAy − ygAx) q

∣

∣

A+=0
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Summary part 1:

Ji: Jz = 1
2∆Σ+

∑

q Lq + Jg

Jaffe: Jz = 1
2∆Σ+

∑

q Lq +∆G+ Lg

∆G can be defined without reference to gauge (and hence gauge
invariantly) as the quantity that enters the evolution equations

and/or
→
p
←
p

→֒ represented by simple (i.e. local) operator only in LC gauge and
corresponds to the operator that one would naturally identify with
‘spin’ only in that gauge

in general Lq 6= Lq or Jg 6= ∆G+ Lg, but

how significant is the difference between Lq and Lq, etc. ?
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OAM in scalar diquark model

[M.Burkardt + H.BC, PRD 79, 071501 (2009)]

toy model for nucleon where nucleon (mass M ) splits into quark
(mass m) and scalar ‘diquark’ (mass λ)

→֒ light-cone wave function for quark-diquark Fock component

ψ
↑
+ 1

2

(x,k⊥) =
(

M +
m

x

)

φ ψ
↑
− 1

2

= −k
1 + ik2

x
φ

with φ = c/
√
1−x

M2−
k2
⊥

+m2

x
−

k2
⊥

+λ2

1−x

.

quark OAM according to JM: Lq =
∫ 1

0
dx

∫

d2
k⊥

16π3 (1− x)
∣

∣

∣
ψ
↑
− 1

2

∣

∣

∣

2

quark OAM according to Ji: Lq = 1
2

∫ 1

0
dxx [q(x) + E(x, 0, 0)]− 1

2∆q

 (using Lorentz inv. regularization, such as Pauli Villars
subtraction) both give identical result, i.e. Lq = Lq

not surprising since scalar diquark model is not a gauge theory

GPDs as a (cool) tool to study nucleon structure – p.35/48



OAM in scalar diquark model

But, even though Lq = Lq in this non-gauge theory

Lq(x) ≡
∫

d2k⊥
16π3

(1−x)
∣

∣

∣ψ
↑
− 1

2

∣

∣

∣

2

6= 1

2
{x [q(x) + E(x, 0, 0)]−∆q(x)} ≡ Lq(x)

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1
x

L 
q (x)

L 
q (x)

→֒ ‘unintegrated Ji-relation’ does not yield x-distribution of OAM
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OAM in QED

light-cone wave function in eγ Fock component

Ψ↑
+ 1

2+1
(x,k⊥) =

√
2
k1 − ik2
x(1− x)φ Ψ↑

+ 1
2−1

(x,k⊥) = −
√
2
k1 + ik2

1− x φ

Ψ↑− 1
2+1

(x,k⊥) =
√
2
(m

x
−m

)

φ Ψ↑− 1
2−1

(x,k⊥) = 0

OAM of e− according to Jaffe/Manohar

Le =
∫ 1

0
dx

∫

d2k⊥(1− x)
[

∣

∣

∣
Ψ↑

+ 1
2−1

(x,k⊥)
∣

∣

∣

2

−
∣

∣

∣
Ψ↑

+ 1
2+1

(x,k⊥)
∣

∣

∣

2
]

e− OAM according to Ji Le =
1
2

∫ 1

0
dxx [q(x) + E(x, 0, 0)]− 1

2∆q

 Le = Le +
α
4π 6= Le

Likewise, computing Jγ from photon GPD, and ∆γ and Lγ from

light-cone wave functions and defining L̂γ ≡ Jγ −∆γ yields

L̂γ = Lγ + α
4π 6= Lγ

α
4π appears to be small, but here Le, Le are all of O(απ )GPDs as a (cool) tool to study nucleon structure – p.37/48



OAM in QCD

→֒ 1-loop QCD: Lq − Lq = αs

3π (for jz = + 1
2 )

recall (lattice QCD): Lu ≈ −.15; Ld ≈ +.15

QCD evolution yields negative correction to Lu and positive
correction to Ld

→֒ evolution suggested (A.W.Thomas) to explain apparent
discrepancy between quark models (low Q2) and lattice results
(Q2 ∼ 4GeV 2)

above result suggests that Lu > Lu and Ld < Ld

additional contribution (with same sign) from vector potential due
to spectators (MB, to be published)

→֒ possible that lattice result consistent with Lu > Ld
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Summary part 2 JiJaffe & Manohar

1
2∆Σ1

2∆Σ

Jg
∆G

∑
q Lq

∑
q Lq

Lg

inclusive
→
e
←
p /
→
p
←
p

provide access to

quark spin 1
2∆q

gluon spin ∆G

parton grand total OAM L ≡ Lg +
∑

q Lq = 1
2 −∆G− 1

2

∑

q ∆q

DVCS & polarized DIS and/or lattice provide access to

quark spin 1
2∆q

Jq & Lq = Jq − 1
2∆q

Jg = 1
2 −

∑

q Jq

Jg −∆G does not yield gluon OAM Lg

Lq − Lq = O(0.1 ∗ αs) for O(αs) dressed quark
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pizza tre e mezzo stagioni

Chen, Goldman et al.: integrate by parts in Jg
only for term involving Aphys, where

A = Apure+Aphys with ∇·Aphys = 0 ∇×Apure = 0

1
2 =

∑

q Jq + Jg =
∑

q

(

1
2∆q + L′q

)

+ S′g + L′g with ∆q as in JM/Ji

L′q =

∫

d3x 〈P, S| q†(~x)
(

~x× i ~Dpure

)3

q(~x) |P, S〉

S′g =

∫

d3x 〈P, S|
(

~E × ~Aphys

)3

|P, S〉

L′g =

∫

d3x 〈P, S|Ei
(

~x× ~∇
)3

Ai
phys |P, S〉

i ~Dpure = i~∂ − g ~Apure

only 1
2∆q accessible experimentally
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example: angular momentum in QED

consider now, QED with electrons:

~Jγ =

∫

d3r ~x×
(

~E × ~B
)

=

∫

d3r ~x×
[

~E ×
(

~∇× ~A
)]

integrate by parts

~J =

∫

d3r
[

Ej
(

~x× ~∇
)

Aj +
(

~x× ~A
)

~∇ · ~E + ~E × ~A
]

replace 2nd term (eq. of motion ~∇ · ~E = ej0 = eψ†ψ), yielding

~Jγ =

∫

d3r
[

ψ†~r × e ~Aψ + Ej
(

~x× ~∇
)

Aj + ~E × ~A
]

ψ†~r × e ~Aψ cancels similar term in electron OAM ψ†~r × (~p−e ~A)ψ
→֒ decomposing ~Jγ into spin and orbital also shuffles angular

momentum from photons to electrons!
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pizza tre e mezzo stagioni

Chen, Goldman et al.: integrate by parts in Jg
only for term involving Apure, where

A = Apure+Aphys with ∇·Aphys = 0 ∇×Apure = 0
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B.L.T. pizza ?

Bakker, Leader, Trueman:

JM only applies for s = p̂

(helicity sum rule)

Ji applies to any component,
but parton interpretation only for Sz

For p 6= 0, Ji only applies to helicity

‘sum rule’ s ⊥ p̂

1

2
=

1

2

∑

a∈q,q̄

∫

dxha1(x) +
∑

a∈q,q̄,g
〈La

sT 〉

where La
sT component of La along sT

note:
∑

a∈q,q̄
∫

dxha1(x) not tensor charge (latter is: ‘q − q̄’)

La ∼ ψ†k×∇kψ

distinction between transversity and transverse spin obscure in
two-component formalism used
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B.L.T. pizza ?

‘B.L.T. sum rule’ s ⊥ p̂
1
2 = 1

2

∑

a∈q,q̄
∫

dxha1(x) +
∑

a∈q,q̄,s〈La
sT 〉

should already be suspicious as Tµν is chirally even (mq = 0) and

so should ~J ...

〈La
sT 〉 not accessible experimentally, i.e. B.L.T. not experimentally

falsifyable, but

studies (diquark model) under way to test B.L.T. ...
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(Grand) Summary

GPDs FT←→ IPDs (impact parameter dependent PDFs)

E(x, 0,−∆2
⊥) −→ ⊥ deformation of PDFs for ⊥ polarized target

DVCS at fixed Q2 ↔ GPDs(ξ, ξ, t),∆(t)

Fourier transform of GPDs w.r.t. ∆⊥ provides dependence of
overlap matrix element on 1−x

1−ζ r⊥ where r⊥ is separation between

active quark and the COM of spectators

→֒ for x = ζ, variable conjugate to ∆⊥ is r⊥
(note: t-slope = (1− ζ)× ∆2

⊥-slope)
1
2 − 1

2

∑

q

∫

dxx [Hq(x, ξ, 0) + Eq(x, ξ, 0)]−∆G 6= Lg
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