# GPDs as a (cool) tool to study nucleon structure 

Matthias Burkardt<br>burkardt@nmsu.edu

New Mexico State University

- Probabilistic interpretation of GPDs as Fourier trafo of impact parameter dependent PDFs
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $\tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow \Delta q\left(x, \mathbf{b}_{\perp}\right)$

- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ distortion of PDFs when the
- DVCS $\stackrel{?}{\sim}$ GPDs target is $\perp$ polarized
- GPDs for $x=\xi$
- What is orbital angular momentum?
- Summary




## Deeply Virtual Compton Scattering (DVCS)

- virtual Compton scattering: $\gamma^{*} p \longrightarrow \gamma p$ (actually: $e^{-} p \longrightarrow e^{-} \gamma p$ )
- 'deeply': $-q_{\gamma}^{2} \gg M_{p}^{2},|t| \longrightarrow$ Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks
$\hookrightarrow$ only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction $x$ )
$\hookrightarrow$ DVCS amplitude provides access to momentum-decomposition of form factor $=$ Generalized Parton Distribution (GPDs).

(a)

(b)


## Generalized Parton Distributions (GPDs)

- GPDs: decomposition of form factors at a given value of $t$, w.r.t. the average momentum fraction $x=\frac{1}{2}\left(x_{i}+x_{f}\right)$ of the active quark

$$
\begin{array}{rlr}
\int d x H_{q}(x, \xi, t) & =F_{1}^{q}(t) \quad \int d x \tilde{H}_{q}(x, \xi, t)=G_{A}^{q}(t) \\
\int d x E_{q}(x, \xi, t) & =F_{2}^{q}(t) \quad \int d x \tilde{E}_{q}(x, \xi, t)=G_{P}^{q}(t),
\end{array}
$$

- $x_{i}$ and $x_{f}$ are the momentum fractions of the quark before and after the momentum transfer
- $2 \xi=x_{f}-x_{i}$
- GPDs can be probed in deeply virtual Compton scattering (DVCS)



## Generalized Parton Distributions (GPDs)

- DVCS amplitude

$$
\mathcal{A}_{D V C S}(\xi, t) \sim \int_{-1}^{1} \frac{d x}{x-\xi+i \varepsilon} G P D(x, \xi, t)
$$

- in the limit of vanishing $t$ and $\xi$, the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$
H_{q}(x, 0,0)=q(x) \quad \tilde{H}_{q}(x, 0,0)=\Delta q(x) .
$$

## Impact parameter dependent PDFs

- define $\perp$ localized state [D.Soper,PRD15, 1141 (1977)]

$$
\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \lambda\right\rangle \equiv \mathcal{N} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle
$$

Note: $\perp$ boosts in IMF form Galilean subgroup $\Rightarrow$ this state has
$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int d x^{-} d^{2} \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x)=\sum_{i} x_{i} \mathbf{r}_{i, \perp}=\mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

- define impact parameter dependent PDF
$q\left(x, \mathbf{b}_{\perp}\right) \equiv \int \frac{d x^{-}}{4 \pi}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{q}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} q\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}}$

$$
\hookrightarrow \quad \begin{array}{cc}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right), \\
\Delta q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right),
\end{array}
$$

## Impact parameter dependent PDFs

- No relativistic corrections (Galilean subgroup!)
$\hookrightarrow$ corrolary: interpretation of 2d-FT of $F_{1}\left(Q^{2}\right)$ as charge density in transverse plane also free from relativistic corrections
- $q\left(x, \mathbf{b}_{\perp}\right)$ has probabilistic interpretation as number density ( $\Delta q\left(x, \mathbf{b}_{\perp}\right)$ as difference of number densities)
- $\xi=0$ essential for probabilistic interpretation

$$
\left\langle p^{+\prime}, 0_{\perp}\right| b^{\dagger}\left(x, \mathbf{b}_{\perp}\right) b\left(x, \mathbf{b}_{\perp}\right)\left|p^{+}, 0_{\perp}\right\rangle \sim\left|b\left(x, \mathbf{b}_{\perp}\right)\right\rangle\left|p^{+}, 0_{\perp}\right|^{2}
$$

works only for $p^{+}=p^{+\prime}$

- Reference point for IPDs is transverse center of (longitudinal) momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{i, \perp}$
$\hookrightarrow$ for $x \rightarrow 1$, active quark 'becomes' COM, and $q\left(x, \mathbf{b}_{\perp}\right)$ must become very narrow ( $\delta$-function like)
$\hookrightarrow H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)$ must become $\boldsymbol{\Delta}_{\perp}$ indep. as $x \rightarrow 1$ (MB, 2000)

$q\left(x, \mathbf{b}_{\perp}\right)$ for unpol. p

unpolarized p (MB,2000)

$x=$ momentum fraction of the quark
$\vec{b}=\perp$ position of the quark
p polarized in $+\hat{x}$ direction (MB,2003)

$$
d\left(x, \mathbf{b}_{\perp}\right)
$$



- photon interacts more strongly with quark currents that point in direction opposite to photon momentum
$\hookrightarrow$ sideways shift of quark distributions
- sign \& magnitude of shift (modelindependently) predicted to be related to the proton/neutron anomalous magnetic moment!


## p polarized in $+\hat{x}$ direction


lattice results (QCDSF)

## Accessing GPDs in DVCS

- $\mathcal{A}_{D V C S}(\xi, t) \longrightarrow \int_{-1}^{1} d x \frac{G P D^{(+)}(x, \xi, t)}{x-\xi+i \varepsilon}$
- $\xi$ longitudinal mometum transfer on the target $\xi=\frac{p^{+1}-p^{+}}{p^{+1}+p^{+}}$
- $x$ (average) momentum fraction of the active quark $x=\frac{k^{+1}+p^{+}}{p^{+}+p^{+}}$
- $\Im \mathcal{A}_{D V C S}(\xi, t) \longrightarrow G P D^{(+)}(\xi, \xi, t)$
- only sensitive to 'diagonal' $x=\xi$
- limited $\xi$ range

$$
-t=\frac{4 \xi^{2} M^{2}+\Delta_{\perp}^{2}}{1-\xi^{2}}
$$

$\hookrightarrow-t_{\text {min }}=\frac{4 \xi^{2} M^{2}}{1-\xi^{2}} \quad$ or $\xi_{\text {max }}$ for given value of $-t$

- $\Re \mathcal{A}_{D V C S}(\xi, t) \longrightarrow \int_{-1}^{1} d x \frac{G P D^{(+)}(x, \xi, t)}{x-\xi}$ probes GPDs off the diagonal, but ...


## Polynomiality \& the D-term

- Lorentz invariance $\Rightarrow$ polynomiality ( $n$ odd)
$\int_{0}^{1} d x x^{n} G P D^{(+)}(x, \xi, t)=B_{n 0}(t)+B_{n 2}(t) \xi^{2}+B_{n 4}(t) \xi^{4}+. .+B_{n, n+1}(t) \xi^{n+1}$
Consider in the following only charge-even GPDs, e.g.
$H^{(+)}(x, \xi, t) \equiv H(x, \xi, t)-H(-x, \xi, t)$ but drop superscript ${ }^{(+)}$
$\hookrightarrow$ Polynomiality highly constrains possible functional form of GPDs and plays crucial role in 'deconvolution' of the DVCS amplitude
- original 'double distribution' representation for GPDs (Radyushkin) manifestly satisfied polynomiality, but without $B_{n, n+1}$-term
- ' $D$-term' (Polyakov \& Weiss) added to allow for highest power of $\xi$

$$
H(x, \xi, t)=H_{D D}(x, \xi, t)+\Theta\left(\xi^{2}-x^{2}\right) D\left(\frac{x}{\xi}, t\right)
$$

## Polynomiality \& the D-term

- ' $D$-term' (Polyakov \& Weiss) added to allow for highest power of $\xi$

$$
H(x, \xi, t)=H_{D D}(x, \xi, t)+\Theta\left(\xi^{2}-x^{2}\right) D\left(\frac{x}{\xi}, t\right)
$$

- $D$-term contributes only to real part of DVCS amplitude, with ' $D$-form factor' $\Delta(t)=\int_{0}^{1} d z \frac{D(z, t)}{1-z}$

$$
\Re \mathcal{A}(\xi, t)=\int_{0}^{1} d x \frac{H_{D D}^{+}(x, \xi, t)}{x-\xi}+\Delta(t)
$$

- For fixed $x$, contribution of $D$-term to $H(x, \xi, t)$ disappears as $\xi \rightarrow 0$, but $\delta(x)$-like contribution to Compton Amplitude

$$
\lim _{\xi \rightarrow 0} \frac{H(x, \xi, t)}{x-\xi}=\frac{H_{D D}(x, 0, t)}{x}+\delta(x) \Delta(t)
$$

- More recently (Anikin \& Teryaev): $\Delta$ arises as subtraction-constant in dispersion relation for DVCS amplitude


## $\mathcal{A}(\xi, t) \longleftrightarrow G P D^{(+)}(\xi, \xi, t), \Delta(t)$

- (Anikin \& Teryaev): $\Delta$ arises as subtraction-constant in dispersion relation for DVCS amplitude

$$
\Re \mathcal{A}(\nu, t)=\frac{\nu^{2}}{\pi} \int_{0}^{\infty} \frac{d \nu^{\prime 2}}{\nu^{\prime 2}} \frac{\Im \mathcal{A}\left(\nu^{\prime}, t\right)}{\nu^{\prime 2}-\nu^{2}}+\Delta(t)
$$

- In combination with LO factorization $\left(\mathcal{A}=\int_{-1}^{1} d x \frac{H(x, \xi, t)}{x-\xi+i \varepsilon}\right)$

$$
\Re \mathcal{A}(\xi, t)=\int_{-1}^{1} d x \frac{H(x, \xi, t)}{x-\xi}=\int_{-1}^{1} d x \frac{H(x, x, t)}{x-\xi}+\Delta(t)
$$

- earlier derived from polynomiality (Goeke,Polyakov,Vanderhaeghen)
$\hookrightarrow$ Possible to 'condense' information contained in $\mathcal{A}_{D V C S}$ (fixed $Q^{2}$, assuming leading twist factorization) into $G P D(x, x, t) \& \Delta(t)$

$$
\mathcal{A}(\xi, t) \leftrightarrow\left\{\begin{array}{c}
G P D(\xi, \xi, t) \\
\Delta(t)
\end{array}\right.
$$

## $\mathcal{A}(\xi, t) \longleftrightarrow G P D(\xi, \xi, t), \Delta(t)$

- $\Re \mathcal{A}(\xi, t)=\int_{-1}^{1} d x \frac{H(x, \xi, t)}{x-\xi}$ probes GPDs for $x \neq \xi$, but new information
- using polynomiality/dispersion relation, DVCS information on GPDs (fixed $Q^{2}$ ) can be 'projected back' onto diagonal plus $D$-term!
$\hookrightarrow$ better to fit parameterizations for $G P D(x, x, t)$ plus $\Delta(t)$ to $\mathcal{A}_{D V C S}$ rather than parameterizations for $\operatorname{GPD}(x, \xi, t)$ ?
- even after 'projecting back' onto $\operatorname{GPD}(x, x, t), \Re \mathcal{A}(\xi, t)$ still provides new (not in $\Im \mathcal{A}$ ) info on GPDs:
- $D$-form factor
- constraints from $\int d x \frac{\operatorname{GPD}(x, x, t)}{x-\xi}$ on $\operatorname{GPD}(\xi, \xi, t)$ in kinematically inaccessible range $-t \leq-t_{0} \equiv \frac{4 M^{2} \xi^{2}}{1-\xi^{2}}$
- good news for model builders: as long as a model fits $\Im \mathcal{A}(\xi, t)$, it should also do well for $\Re \mathcal{A}(\xi, t)$, provided
- model has polynomility
- allows for a $D$-form factor


## $\mathcal{A}(\xi, t) \longleftrightarrow G P D(\xi, \xi, t), \Delta(t)$

- trivial solution:

$$
H_{D} D(x, \xi, t) \equiv H(x, x, t)
$$

plus suitable $\Delta(t)$ will

- fit DVCS data
- satisfy polynomiality (trivially!)


## Application of $\int_{-1}^{1} d x \frac{H(x, \xi, t)}{x-\xi}=\int_{-1}^{1} d x \frac{H(x, x, t)}{x-\xi}+\Delta(t)$

- take $\xi \rightarrow 0$ (should exist for $-t$ sufficiently large)

$$
\int_{-1}^{1} d x \frac{H^{(+)}(x, 0, t)}{x}=\int_{-1}^{1} d x \frac{H^{(+)}(x, x, t)}{x}+\Delta(t)
$$

$\hookrightarrow$ DVCS allows access to same generalized form factor $\int_{-1}^{1} d x \frac{H^{(+)}(x, 0, t)}{x}$ also available in WACS (wide angle Compton scattering), but $t$ does not have to be of order $Q^{2}$
$\hookrightarrow$ after flavor separation, $\frac{1}{F_{1}(t)} \int_{-1}^{1} d x \frac{H^{(+)}(x, 0, t)}{x}$ at large $t$ provides information about the 'typical $x$ ' that dominates large $t$ form factor

## GPDs for $x=\xi$

examples for interesting physics that can be extracted from GPDs:

- impact parameter dependent PDFs

$$
q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)
$$

$\hookrightarrow \xi$ needs to be zero

- Ji: $\left\langle\vec{J}^{q}\right\rangle_{\vec{S}}=\vec{S} \int d x x[H(x, \xi, 0)+E(x, \xi, 0)]$
$\hookrightarrow \xi$ can be arbitrary but fixed value
DVCS experiments provide information about:
- $G P D s(\xi, \xi, t)$ directly from imaginary part of DVCS amplitude
- $\int \frac{d x}{x \pm \xi} G P D s(x, \xi, t)$ from real part, which is probably dominated by vicinity $x \approx \xi$
- additional constraints from PDFs, form factors, positivity, polynomiality, evolution, ...

- until GPDs have been globally gegenbauered to the point where $x-\xi$ dependence has been disentangled, what can we learn from $\operatorname{GPDs}(\xi, \xi, t)$ ?


## Overlap Representation for GPDs $(x>\zeta)$



$$
\begin{gathered}
G P D(x, \zeta, t)=\sum_{n, \lambda_{i}}(1-\zeta)^{1-\frac{n}{2}} \prod_{i=1}^{n} \frac{\mathrm{~d} x_{i} \mathrm{~d} \mathbf{k}_{\perp, i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta\left(\sum_{j=1}^{n} \mathbf{k}_{\perp j}\right) \delta\left(x-x_{1}\right) \\
\times \psi_{(n)}^{s^{\prime}}\left(x_{i}^{\prime}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right)^{*} \psi_{(n)}^{s}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)
\end{gathered}
$$

- $G P D(x, \zeta, t)=\frac{\sqrt{1-\zeta}}{1-\frac{\zeta}{2}} H(x, \zeta, t)-\frac{\zeta^{2}}{4\left(1-\frac{\zeta}{2}\right) \sqrt{1-\zeta}} E(x, \zeta, t)$, for $s^{\prime}=s$
- $\operatorname{GPD}(x, \zeta, t)=\frac{1}{\sqrt{1-\zeta}} \frac{\Delta^{1}-i \Delta^{2}}{2 M} E(x, \zeta, t)$, for $s^{\prime}=\uparrow$ and $s=\downarrow$
- $\Delta$ is the transverse momentum transfer.
- $x_{1}^{\prime}=\frac{x_{1}-\zeta}{1-\zeta}$ and $\mathbf{k}_{\perp 1}^{\prime}=\mathbf{k}_{\perp 1}-\frac{1-x_{1}}{1-\zeta} \Delta_{\perp}$ for the active quark, and
- $x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}$ and $\mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \boldsymbol{\Delta}_{\perp}$ for the spectators $i=2, \ldots, n$.


## GPDs in $\perp$ position space $(n=2)$

$G P D(x, \zeta, t)=\sum_{\lambda_{i}} \int \frac{\mathrm{~d} \mathbf{k}_{\perp, 1}}{16 \pi^{3}} \psi^{s^{\prime}}\left(x_{1}^{\prime}, \mathbf{k}_{\perp 1}^{\prime}, \lambda_{i}\right)^{*} \psi^{s}\left(x_{1}, \mathbf{k}_{\perp 1}, \lambda_{i}\right)$,

- $x_{1}^{\prime}=\frac{x_{1}-\zeta}{1-\zeta}$ and $\mathbf{k}_{\perp 1}^{\prime}=\mathbf{k}_{\perp 1}-\frac{1-x_{1}}{1-\zeta} \boldsymbol{\Delta}_{\perp}$ for the active quark
- spectator momentum constrained by momentum conservation: $x_{2}=1-x_{1}$ and $\mathbf{k}_{\perp 2}=-\mathbf{k}_{\perp 1}$
Diagonalize by Fourier transform
- $\tilde{\psi}^{s}\left(x, \mathbf{r}_{\perp}\right)=\int \frac{d^{2} \mathbf{k}_{\perp}}{2 \pi} \psi^{s}\left(x, \mathbf{k}_{\perp}\right) e^{i \mathbf{k}_{\perp} \cdot \mathbf{r}_{\perp}}$
- $\mathbf{r}_{\perp}$ is the $\perp$ distance between active quark and spectator
$\hookrightarrow G P D(x, \zeta, t) \propto \int d^{2} \mathbf{r}_{\perp} \tilde{\psi}^{*}\left(x^{\prime}, \mathbf{r}_{\perp}\right) \tilde{\psi}^{*}\left(x^{\prime}, \mathbf{r}_{\perp}\right) e^{-i \frac{1-x}{1-\varsigma} \mathbf{r}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$


## GPDs in $\perp$ position space (general case)

- repeating the same steps in the general case ( $n \geq 3$ ) yields.......

$$
G P D(x, \zeta, t)=\sum_{n}(1-\zeta)^{1-\frac{n}{2}} \int \prod_{i=1}^{n} \frac{d^{2} \mathbf{r}_{\perp i}}{2 \pi} \tilde{\psi}_{(n)}\left(x_{i}^{\prime}, \mathbf{r}_{\perp i}\right)^{*} \tilde{\psi}_{(n)}^{s}\left(x_{i}, \mathbf{r}_{\perp i}\right) e^{-i \frac{1-x}{1-\zeta}\left(\mathbf{r}_{\perp 1}-\mathbf{R}_{\perp s}\right) \cdot \boldsymbol{\Delta}}
$$

- $\mathbf{R}_{\perp s}$ is the center of momentum of the spectators.
$\hookrightarrow$ FT of GPD w.r.t. $\Delta_{\perp}$ gives overlap when active quark and spectators are distance $\frac{1-x}{1-\zeta} \mathbf{r}_{\perp}$ apart



## GPDs in $\perp$ position space (general case)

- general case: $\Delta_{\perp}$ conjugate to $\frac{1-x}{1-\zeta} \mathbf{r}_{\perp}$
- special case: $\zeta=0 \quad \Rightarrow \quad \frac{1-x}{1-\zeta} \mathbf{r}_{\perp}=(1-x) \mathbf{r}_{\perp}=\mathbf{b}_{\perp}=$ distance between active quark and center of momentum of hadron.
- special case: $x=\zeta \quad \Rightarrow \quad \frac{1-x}{1-\zeta} \mathbf{r}_{\perp}=\mathbf{r}_{\perp}$
$\hookrightarrow$ for $x=\zeta$, the variable that is (Fourier) conjugate to $\Delta_{\perp}$ is the distance between the active quark and the center of momentum of the spectators $\mathbf{r}_{\perp}$
- unlike the $\mathbf{b}_{\perp}$ distribution, which must become point-like for $x \rightarrow 1$, the $\mathbf{r}_{\perp}$-distribution does not have to become narrow for $x \rightarrow 1$
- Note: the $t$-slope still has to go to zero as $\zeta \rightarrow 1$, as

$$
-t=\frac{\zeta^{2} M^{2}+\Delta_{\perp}{ }^{2}}{1-\zeta}
$$

$\hookrightarrow t$-slope $B$ and $\Delta_{\perp}^{2}$-slope $B_{\perp}$ related via $B=(1-\zeta) B_{\perp}$

## Motivation

- polarized DIS: only $\sim 30 \%$ of the proton spin due to quark spins
$\hookrightarrow$ 'spin crisis' $\longrightarrow$ 'spin puzzle', because $\Delta \Sigma$ much smaller than the quark model result $\Delta \Sigma=1$
$\hookrightarrow$ quest for the remaining $70 \%$
- quark orbital angular momentum (OAM)
- gluon spin
- gluon OAM
$\hookrightarrow$ How are the above quantities defined?
$\hookrightarrow$ How can the above quantities be measured



## example: angular momentum in QED

- consider, for simplicity, first QED without electrons:

$$
\vec{J}=\int d^{3} r \vec{x} \times(\vec{E} \times \vec{B})=\int d^{3} r \vec{x} \times[\vec{E} \times(\vec{\nabla} \times \vec{A})]
$$

- use $\vec{E} \times(\vec{\nabla} \times \vec{A})=E^{j} \vec{\nabla} A^{j}-(\vec{E} \cdot \vec{\nabla}) \vec{A}$ and integrate $2^{\text {nd }}$ term by parts

$$
\hookrightarrow \vec{J}=\int d^{3} r\left[E^{j}(\vec{x} \times \vec{\nabla}) A^{j}+(\vec{x} \times \vec{A}) \vec{\nabla} \cdot \vec{E}+\vec{E} \times \vec{A}\right]
$$

- drop $2^{\text {nd }}$ term (eq. of motion $\vec{\nabla} \cdot \vec{E}=0$ ), yielding $\vec{J}=\vec{L}+\vec{S}$ with

$$
\vec{L}=\int d^{3} r E^{j}(\vec{x} \times \vec{\nabla}) A^{j} \quad \vec{S}=\int d^{3} r \vec{E} \times \vec{A}
$$

- note: $\vec{L}$ and $\vec{S}$ not separately gauge invariant


## example: angular momentum in QED with electrons

$$
\begin{aligned}
\vec{J}_{\gamma} & =\int d^{3} r \vec{r} \times(\vec{E} \times \vec{B})=\int d^{3} r \vec{x} \times[\vec{E} \times(\vec{\nabla} \times \vec{A})] \\
& =\int d^{3} r\left[E^{j}(\vec{r} \times \vec{\nabla}) A^{j}-\vec{r} \times(\vec{E} \cdot \vec{\nabla}) \vec{A}\right] \\
& =\int d^{3} r\left[E^{j}(\vec{r} \times \vec{\nabla}) A^{j}+(\vec{r} \times \vec{A}) \vec{\nabla} \cdot \vec{E}+\vec{E} \times \vec{A}\right]
\end{aligned}
$$

- replace $2^{\text {nd }}$ term (eq. of motion $\vec{\nabla} \cdot \vec{E}=e j^{0}=e \psi^{\dagger} \psi$ ), yielding

$$
\vec{J}_{\gamma}=\int d^{3} r\left[\psi^{\dagger} \vec{r} \times e \vec{A} \psi+E^{j}(\vec{x} \times \vec{\nabla}) A^{j}+\vec{E} \times \vec{A}\right]
$$

- $\psi^{\dagger} \vec{r} \times e \vec{A} \psi$ cancels similar term in electron OAM $\psi^{\dagger} \vec{r} \times(\vec{p}-e \vec{A}) \psi$
$\hookrightarrow$ decomposing $\vec{J}_{\gamma}$ into spin and orbital also shuffles angular momentum from photons to electrons!


## Outline

- Ji decomposition
- Jaffe decomposition
- recent lattice results (Ji decomposition)
- model/QED illustrations for Ji v. Jaffe
- Chen-Goldman decomposition


## The nucleon spin pizza(s)

Ji

'pizza tre stagioni'

Jaffe \& Manohar

'pizza quattro stagioni'

- only $\frac{1}{2} \Delta \Sigma \equiv \frac{1}{2} \sum_{q} \Delta q$ common to both decompositions!


## Ji-decomposition

- Ji (1997)

$$
\frac{1}{2}=\sum_{q} J_{q}+J_{g}=\sum_{q}\left(\frac{1}{2} \Delta q+L_{q}\right)+J_{g}
$$

with $\left(P^{\mu}=(M, 0,0,1), S^{\mu}=(0,0,0,1)\right)$

$$
\begin{aligned}
\frac{1}{2} \Delta q & =\frac{1}{2} \int d^{3} x\langle P, S| q^{\dagger}(\vec{x}) \Sigma^{3} q(\vec{x})|P, S\rangle \quad \Sigma^{3}=i \gamma^{1} \gamma^{2} \\
L_{q} & =\int d^{3} x\langle P, S| q^{\dagger}(\vec{x})(\vec{x} \times i \vec{D})^{3} q(\vec{x})|P, S\rangle \\
J_{g} & =\int d^{3} x\langle P, S|[\vec{x} \times(\vec{E} \times \vec{B})]^{3}|P, S\rangle
\end{aligned}
$$

- $i \vec{D}=i \vec{\partial}-g \vec{A}$


## Ji-decomposition

- $\vec{J}=\sum_{q} \frac{1}{2} q^{\dagger} \vec{\Sigma} q+q^{\dagger}(\vec{r} \times i \vec{D}) q+\vec{r} \times(\vec{E} \times \vec{B})$ applies to each vector component of nucleon angular momentum, but Ji-decomposition usually applied only to $\hat{z}$ component where at least quark spin has parton interpretation as difference between number densities
- $\Delta q$ from polarized DIS
- $J_{q}=\frac{1}{2} \Delta q+L_{q}$ from exp/lattice (GPDs)
- $L_{q}$ in principle independently defined as matrix elements of $q^{\dagger}(\vec{r} \times i \vec{D}) q$, but in practice easier by subtraction $L_{q}=J_{q}-\frac{1}{2} \Delta q$
- $J_{g}$ in principle accessible through gluon GPDs, but in practice easier by subtraction $J_{g}=\frac{1}{2}-J_{q}$
- Ji makes no further decomposition of $J_{g}$ into intrinsic (spin) and extrinsic (OAM) piece


## $L_{q}$ for proton from Ji-relation (lattice)

- lattice QCD $\Rightarrow$ moments of GPDs (LHPC; QCDSF)
$\hookrightarrow$ insert in Ji-relation

$$
\left\langle J_{q}^{i}\right\rangle=S^{i} \int d x\left[H_{q}(x, 0)+E_{q}(x, 0)\right] x .
$$

$\hookrightarrow L_{q}^{z}=J_{q}^{z}-\frac{1}{2} \Delta q$

- $L_{u}, L_{d}$ both large!
- present calcs. show $L_{u}+L_{d} \approx 0$, but
- disconnected diagrams ..?
- $m_{\pi}^{2}$ extrapolation
- parton interpret. of $L_{q} \cdots$



## Jaffe/Manohar decomposition

- in light-cone framework \& light-cone gauge $A^{+}=0$ one finds for $J^{z}=\int d x^{-} d^{2} \mathbf{r}_{\perp} M^{+x y}$


$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\sum_{q} \mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}
$$

where $\left(\gamma^{+}=\gamma^{0}+\gamma^{z}\right)$

$$
\begin{aligned}
\mathcal{L}_{q} & =\int d^{3} r\langle P, S| \bar{q}(\vec{r}) \gamma^{+}(\vec{r} \times i \vec{\partial})^{z} q(\vec{r})|P, S\rangle \\
\Delta G & =\varepsilon^{+-i j} \int d^{3} r\langle P, S| \operatorname{Tr} F^{+i} A^{j}|P, S\rangle \\
\mathcal{L}_{g} & =2 \int d^{3} r\langle P, S| \operatorname{Tr} F^{+j}(\vec{x} \times i \vec{\partial})^{z} A^{j}|P, S\rangle
\end{aligned}
$$

## Jaffe/Manohar decomposition

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\sum_{q} \mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}
$$

- $\Delta \Sigma=\sum_{q} \Delta q$ from polarized DIS (or lattice)
- $\Delta G$ from $\vec{p} \stackrel{\rightharpoonup}{p}$ or polarized DIS (evolution)
$\hookrightarrow \Delta G$ gauge invariant, but local operator only in light-cone gauge
- $\int d x x^{n} \Delta G(x)$ for $n \geq 1$ can be described by manifestly gauge inv. local op. ( $\longrightarrow$ lattice)
- $\mathcal{L}_{q}, \mathcal{L}_{g}$ independently defined, but
- no exp. identified to access them
- not accessible on lattice, since nonlocal except when $A^{+}=0$
- parton net OAM $\mathcal{L}=\mathcal{L}_{g}+\sum_{q} \mathcal{L}_{q}$ by subtr. $\mathcal{L}=\frac{1}{2}-\frac{1}{2} \Delta \Sigma-\Delta G$
- in general, $\mathcal{L}_{q} \neq L_{q} \quad \mathcal{L}_{g}+\Delta G \neq J_{g}$
- makes no sense to 'mix' Ji and JM decompositions, e.g. $J_{g}-\Delta G$ has no fundamental connection to OAM
- $L_{q}$ matrix element of

$$
q^{\dagger}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q=\bar{q} \gamma^{0}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q
$$

- $\mathcal{L}_{q}^{z}$ matrix element of $\left(\gamma^{+}=\gamma^{0}+\gamma^{z}\right)$

$$
\left.\bar{q} \gamma^{+}[\vec{r} \times i \vec{\partial}]^{z} q\right|_{A^{+}=0}
$$

- (for $\vec{p}=0)$ matrix element of $\bar{q} \gamma^{z}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q$ vanishes (parity!)
$\hookrightarrow L_{q}$ identical to matrix element of $\bar{q} \gamma^{+}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q$ (nucleon at rest)
$\hookrightarrow$ even in light-cone gauge, $L_{q}^{z}$ and $\mathcal{L}_{q}^{z}$ still differ by matrix element of $\left.q^{\dagger}(\vec{r} \times g \vec{A})^{z} q\right|_{A^{+}=0}=\left.q^{\dagger}\left(x g A^{y}-y g A^{x}\right) q\right|_{A^{+}=0}$


## Summary part 1:

- Ji: $J^{z}=\frac{1}{2} \Delta \Sigma+\sum_{q} L_{q}+J_{g}$
- Jaffe: $J^{z}=\frac{1}{2} \Delta \Sigma+\sum_{q} \mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}$
- $\Delta G$ can be defined without reference to gauge (and hence gauge invariantly) as the quantity that enters the evolution equations and/or $\vec{p} \stackrel{\rightharpoonup}{p}$
$\hookrightarrow$ represented by simple (i.e. local) operator only in LC gauge and corresponds to the operator that one would naturally identify with 'spin' only in that gauge
- in general $L_{q} \neq \mathcal{L}_{q}$ or $J_{g} \neq \Delta G+\mathcal{L}_{g}$, but
- how significant is the difference between $L_{q}$ and $\mathcal{L}_{q}$, etc. ?


## OAM in scalar diquark model

[M.Burkardt + H.BC, PRD 79, 071501 (2009)]

- toy model for nucleon where nucleon (mass $M$ ) splits into quark (mass $m$ ) and scalar 'diquark' (mass $\lambda$ )
$\hookrightarrow$ light-cone wave function for quark-diquark Fock component

$$
\psi_{+\frac{1}{2}}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=\left(M+\frac{m}{x}\right) \phi \quad \psi_{-\frac{1}{2}}^{\uparrow}=-\frac{k^{1}+i k^{2}}{x} \phi
$$

with $\phi=\frac{c / \sqrt{1-x}}{M^{2}-\frac{\mathbf{k}_{\underline{2}}^{2}+m^{2}}{x}-\frac{\mathbf{k}_{1}^{2}+\lambda^{2}}{1-x}}$.

- quark OAM according to JM: $\mathcal{L}_{q}=\int_{0}^{1} d x \int \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}}(1-x)\left|\psi_{-\frac{1}{2}}^{\uparrow}\right|^{2}$
- quark OAM according to Ji: $L_{q}=\frac{1}{2} \int_{0}^{1} d x x[q(x)+E(x, 0,0)]-\frac{1}{2} \Delta q$
$\rightsquigarrow$ (using Lorentz inv. regularization, such as Pauli Villars subtraction) both give identical result, i.e. $L_{q}=\mathcal{L}_{q}$
- not surprising since scalar diquark model is not a gauge theory


## OAM in scalar diquark model

- But, even though $L_{q}=\mathcal{L}_{q}$ in this non-gauge theory

$$
\mathcal{L}_{q}(x) \equiv \int \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}}(1-x)\left|\psi_{-\frac{1}{2}}^{\uparrow}\right|^{2} \neq \frac{1}{2}\{x[q(x)+E(x, 0,0)]-\Delta q(x)\} \equiv L_{q}(x)
$$


$\hookrightarrow$ 'unintegrated Ji-relation' does not yield x-distribution of OAM

## OAM in QED

- light-cone wave function in er Fock component

$$
\begin{array}{rlr}
\Psi_{+\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=\sqrt{2} \frac{k^{1}-i k^{2}}{x(1-x)} \phi & \Psi_{+\frac{1}{2}-1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=-\sqrt{2} \frac{k^{1}+i k^{2}}{1-x} \\
\Psi_{-\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=\sqrt{2}\left(\frac{m}{x}-m\right) \phi & \Psi_{-\frac{1}{2}-1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=0
\end{array}
$$

- OAM of $e^{-}$according to Jaffe/Manohar

$$
\mathcal{L}_{e}=\int_{0}^{1} d x \int d^{2} \mathbf{k}_{\perp}(1-x)\left[\left|\Psi_{+\frac{1}{2}-1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)\right|^{2}-\left|\Psi_{+\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)\right|^{2}\right]
$$

- $e^{-}$OAM according to Ji $L_{e}=\frac{1}{2} \int_{0}^{1} d x x[q(x)+E(x, 0,0)]-\frac{1}{2} \Delta q$
$\rightsquigarrow \mathcal{L}_{e}=L_{e}+\frac{\alpha}{4 \pi} \neq L_{e}$
- Likewise, computing $J_{\gamma}$ from photon GPD, and $\Delta \gamma$ and $\mathcal{L}_{\gamma}$ from light-cone wave functions and defining $\hat{L}_{\gamma} \equiv J_{\gamma}-\Delta \gamma$ yields $\hat{L}_{\gamma}=\mathcal{L}_{\gamma}+\frac{\alpha}{4 \pi} \neq \mathcal{L}_{\gamma}$
- $\frac{\alpha}{4 \pi}$ appears to be small, but here $\mathcal{L}_{e}, L_{e}$ are all of $\mathcal{O}\left(\frac{\alpha}{(\pi)}\right)$


## OAM in QCD

$\hookrightarrow$ 1-loop QCD: $\mathcal{L}_{q}-L_{q}=\frac{\alpha_{s}}{3 \pi}$ (for $j_{z}=+\frac{1}{2}$ )

- recall (lattice QCD): $L_{u} \approx-.15 ; L_{d} \approx+.15$
- QCD evolution yields negative correction to $L_{u}$ and positive correction to $L_{d}$
$\hookrightarrow$ evolution suggested (A.W.Thomas) to explain apparent discrepancy between quark models (low $Q^{2}$ ) and lattice results ( $Q^{2} \sim 4 \mathrm{GeV}^{2}$ )
- above result suggests that $\mathcal{L}_{u}>L_{u}$ and $\mathcal{L}_{d}<L_{d}$
- additional contribution (with same sign) from vector potential due to spectators (MB, to be published)
$\hookrightarrow$ possible that lattice result consistent with $\mathcal{L}_{u}>\mathcal{L}_{d}$
- inclusive $\vec{e} \overleftarrow{p} / \vec{p} \overleftarrow{p}$ provide access to
- quark spin $\frac{1}{2} \Delta q$

$\Sigma_{q} L_{q}$
- gluon spin $\Delta G$
- parton grand total OAM $\mathcal{L} \equiv \mathcal{L}_{g}+\sum_{q} \mathcal{L}_{q}=\frac{1}{2}-\Delta G-\frac{1}{2} \sum_{q} \Delta q$
- DVCS \& polarized DIS and/or lattice provide access to
- quark spin $\frac{1}{2} \Delta q$
- $J_{q} \& L_{q}=J_{q}-\frac{1}{2} \Delta q$
- $J_{g}=\frac{1}{2}-\sum_{q} J_{q}$
- $J_{g}-\Delta G$ does not yield gluon $\operatorname{OAM} \mathcal{L}_{g}$
- $L_{q}-\mathcal{L}_{q}=\mathcal{O}\left(0.1 * \alpha_{s}\right)$ for $\mathcal{O}\left(\alpha_{s}\right)$ dressed quark


## pizza tre e mezzo stagioni

- Chen, Goldman et al.: integrate by parts in $J_{g}$ only for term involving $\mathbf{A}_{\text {phys }}$, where

$$
\mathbf{A}=\mathbf{A}_{\text {pure }}+\mathbf{A}_{\text {phys }} \quad \text { with } \quad \nabla \cdot \mathbf{A}_{\text {phys }}=0 \quad \nabla \times \mathbf{A}_{\text {pure }}=0
$$

- $\frac{1}{2}=\sum_{q} J_{q}+J_{g}=\sum_{q}\left(\frac{1}{2} \Delta q+L_{q}^{\prime}\right)+S_{g}^{\prime}+L_{g}^{\prime}$ with $\Delta q$ as in $\mathrm{JM} / \mathrm{Ji}$

$$
\begin{aligned}
L_{q}^{\prime} & =\int d^{3} x\langle P, S| q^{\dagger}(\vec{x})\left(\vec{x} \times i \vec{D}_{\text {pure }}\right)^{3} q(\vec{x})|P, S\rangle \\
S_{g}^{\prime} & =\int d^{3} x\langle P, S|\left(\vec{E} \times \vec{A}_{\text {phys }}\right)^{3}|P, S\rangle \\
L_{g}^{\prime} & =\int d^{3} x\langle P, S| E^{i}(\vec{x} \times \vec{\nabla})^{3} A_{\text {phys }}^{i}|P, S\rangle
\end{aligned}
$$

- $i \vec{D}_{\text {pure }}=i \vec{\partial}-g \vec{A}_{\text {pure }}$
- only $\frac{1}{2} \Delta q$ accessible experimentally


## example: angular momentum in QED

- consider now, QED with electrons:

$$
\vec{J}_{\gamma}=\int d^{3} r \vec{x} \times(\vec{E} \times \vec{B})=\int d^{3} r \vec{x} \times[\vec{E} \times(\vec{\nabla} \times \vec{A})]
$$

- integrate by parts

$$
\vec{J}=\int d^{3} r\left[E^{j}(\vec{x} \times \vec{\nabla}) A^{j}+(\vec{x} \times \vec{A}) \vec{\nabla} \cdot \vec{E}+\vec{E} \times \vec{A}\right]
$$

- replace $2^{\text {nd }}$ term (eq. of motion $\vec{\nabla} \cdot \vec{E}=e j^{0}=e \psi^{\dagger} \psi$ ), yielding

$$
\vec{J}_{\gamma}=\int d^{3} r\left[\psi^{\dagger} \vec{r} \times e \vec{A} \psi+E^{j}(\vec{x} \times \vec{\nabla}) A^{j}+\vec{E} \times \vec{A}\right]
$$

- $\psi^{\dagger} \vec{r} \times e \vec{A} \psi$ cancels similar term in electron OAM $\psi^{\dagger} \vec{r} \times(\vec{p}-e \vec{A}) \psi$
$\hookrightarrow$ decomposing $\vec{J}_{\gamma}$ into spin and orbital also shuffles angular momentum from photons to electrons!


## pizza tre e mezzo stagioni

- Chen, Goldman et al.: integrate by parts in $J_{g}$ only for term involving $\mathbf{A}_{\text {pure }}$, where

$$
\mathbf{A}=\mathbf{A}_{\text {pure }}+\mathbf{A}_{\text {phys }} \quad \text { with } \quad \nabla \cdot \mathbf{A}_{\text {phys }}=0 \quad \nabla \times \mathbf{A}_{\text {pure }}=0
$$

## B.L.T. pizza ?

- Bakker, Leader, Trueman:
- JM only applies for $\mathbf{s}=\hat{\mathbf{p}}$ (helicity sum rule)
- Ji applies to any component, but parton interpretation only for $S_{z}$
- For $\mathbf{p} \neq 0$, Ji only applies to helicity
- 'sum rule' $\mathrm{s} \perp \hat{\mathbf{p}}$

$$
\frac{1}{2}=\frac{1}{2} \sum_{a \in q, \bar{q}} \int d x h_{1}^{a}(x)+\sum_{a \in q, \bar{q}, g}\left\langle L_{s_{T}}^{a}\right\rangle
$$

where $L_{s_{T}}^{a}$ component of $\mathbf{L}^{a}$ along $\mathbf{s}_{T}$


- $\mathbf{L}^{a} \sim \psi^{\dagger} \mathbf{k} \times \nabla_{k} \psi$
- distinction between transversity and transverse spin obscure in two-component formalism used


## B.L.T. pizza ?

- 'B.L.T. sum rule's $\perp \hat{\mathbf{p}}$
$\frac{1}{2}=\frac{1}{2} \sum_{a \in q, \bar{q}} \int d x h_{1}^{a}(x)+\sum_{a \in q, \bar{q}, s}\left\langle L_{s_{T}}^{a}\right\rangle$
- should already be suspicious as $T^{\mu \nu}$ is chirally even ( $m_{q}=0$ ) and so should $\vec{J}$...
- $\left\langle L_{s_{T}}^{a}\right\rangle$ not accessible experimentally, i.e. B.L.T. not experimentally falsifyable, but
- studies (diquark model) under way to test B.L.T. ...


## (Grand) Summary

- GPDs $\stackrel{F T}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ deformation of PDFs for $\perp$ polarized target
- DVCS at fixed $Q^{2} \leftrightarrow G P D s(\xi, \xi, t), \Delta(t)$
- Fourier transform of GPDs w.r.t. $\Delta_{\perp}$ provides dependence of overlap matrix element on $\frac{1-x}{1-\zeta} \mathbf{r}_{\perp}$ where $\mathbf{r}_{\perp}$ is separation between active quark and the COM of spectators
$\hookrightarrow$ for $x=\zeta$, variable conjugate to $\boldsymbol{\Delta}_{\perp}$ is $\mathbf{r}_{\perp}$ (note: $t$-slope $=(1-\zeta) \times \Delta_{\perp}^{2}$-slope)
- $\frac{1}{2}-\frac{1}{2} \sum_{q} \int d x x\left[H_{q}(x, \xi, 0)+E_{q}(x, \xi, 0)\right]-\Delta G \neq \mathcal{L}_{g}$

