Lattice calculations of GPDs

Philipp Hägler

supported by

excellence cluster universe

Overview

Physics: Concentrate on:

Decomposition of the nucleon spin

What we can / cannot do on the lattice (presently)

flavor decomposition; quark/hadron polarizations; range of momentum transfers straightforward

Generalized form factors and basic sumrules

Lattice QCD calculations of hadron structure

Lattice QCD calculations of hadron structure

A, B, C

LHPC n_f=2+1 mixed; arXiv:1001.3620 (updating PRD 2008, 0810.1933)

Chiral extrapolations of A,B,C

global simultaneous fits of A, B, C with common parameter <x> + 8 additional free parameters/LECs, to >80 lattice data points in each case (u-d and u+d)

Nucleon spin structure and spin sum rule

Contributions to the nucleon spin

<mark>MS</mark> at 4 GeV²

$$\frac{1}{2} \stackrel{*}{\approx} 0.238(8)_{[J^{u+d}]} + J_g = 0.210(6)_{[\Delta \Sigma^{u+d}/2]} + 0.030(12)_{[L^{u+d}]} + J_g$$

$$\boxed{\text{MS at 4 GeV}^2}$$

*[non-singlet, connected only] 13

Transverse size of the nucleon – basic observations

correlations in x and t

LHPC n_f=2+1 mixed; arXiv:1001.3620 (updating PRD 2008, 0810.1933)

 $\overline{\mathbf{x}} \rightarrow 1 \Leftrightarrow \mathbf{n} \rightarrow \infty$

Generalized mean square radii of the nucleon

correlations in x and $b_{\gamma\gamma}$

Pion mass dependence : Dirac mean square radius

Pion mass dependence of generalized radii for n>1

Conclusions, open questions, and perspectives I

Conclusions, open questions, and perspectives II

lattice calculations and phenomenological/experimental studies of GPDs are mostly *complementary*

Should lattice results be used to constrain GPD-models/parametrizations?

as always, I am indebted to my collaborators

M. Altenbuchinger, M. Procura, W. Weise

(T3x, TUM)

H. Meyer (CERN), B. Bistrovic, J. Bratt, M. Lin, J.W. Negele, A. Pochinsky, S. Syritsyn (MIT) R.G. Edwards, H.-W. Lin, B. Musch, D.G. Richards (JLab) K. Orginos (W&M) M. Engelhardt (New Mexico) D.B. Renner (DESY Zeuthen), W. Schroers (Berlin)

(LHPC)

D. Brömmel (Southampton), M. Diehl (DESY), M. Göckeler, Th. Hemmert, A. Schäfer (Regensburg U.) M. Gürtler (TU München) R. Horsley, J. Zanotti (Edinburgh U.) Y. Nakamura (DESY Zeuthen) P. Rakow (Liverpool U.) D. Pleiter, G. Schierholz (DESY Zeuthen) H. Stüben (ZIB)

(QCDSF/UKQCD)

References: LHPC PRD 77, 094502 (2008) LHPC arXiv:1001.3620; QCDSF 0912.0167