Lattice calculations of GPDs

Philipp Hägler

supported by

Overview

Physics: Concentrate on:

Decomposition of the nucleon spin

Tomography; Transverse size

What we can / cannot do on the lattice (presently)

flavor decomposition; quark/hadron polarizations; range of momentum transfers straightforward

Generalized form factors and basic sumrules

$\left\langle P^{\prime}\right| \bar{q}(0) \Gamma D^{\mu_{1}} D^{\mu_{2}} \ldots D^{\mu_{n}} q(0)|P\rangle=\bar{U}\left(P^{\prime}, S^{\prime}\right)\left(a_{\Gamma}^{\mu_{\Gamma} \mu_{2}} A_{\Gamma} A_{\Gamma}(t)+b_{\Gamma}{ }^{\mu_{1} \mu_{2} \ldots} B_{\Gamma}(t)+\ldots\right) U(P, S)$

Ji\&Lebed PRD 2000
Ph.H. PLB 2004

Lattice QCD calculations of hadron structure

= local vector-, axialvector-, quark spin flip-, (spin-2) graviton-, , spin-n" coupling

$$
\underbrace{C_{3 p t}\left(P^{\prime}, P, \tau\right) \leftrightarrow e^{-E^{\prime}(T-\tau)-E \tau}\left\langle P^{\prime}, \wedge^{\prime}\right| \mathcal{O}|P, \Lambda\rangle \propto g_{A}, \Delta \Sigma, F_{1}(t), F_{2}(t),\langle x\rangle, A_{20}(t), \ldots}_{\odot} \underset{t=\Delta^{2}\left(\hat{=} q^{2}\right)}{ }
$$

$$
\left(\left\langle q_{2} \bar{q}_{1}\right\rangle \propto \int D A D q d \bar{q} e^{2.5[q, \bar{q}, A]} \rightarrow\left[\int D U e^{-S[U]} \operatorname{det} D[U]\right] D_{1 \rightarrow 2}^{-1}[U] \approx \frac{1}{N} \sum_{i=1}^{N} D_{1 \rightarrow 2}^{-1}\left[U_{i}\right]\right.
$$

Lattice QCD calculations of hadron structure

systematic „ab initio"-approach, but

- statistical errors from MC integration
- discretization and finite volume errors/effects
- contaminations from excited states
- large quark masses $m_{\pi}\left(\propto \sqrt{m_{q}}\right) \gtrsim 300 \mathrm{MeV}$
- large minimal non-zero momenta $p_{\text {min }}=\frac{2 \pi}{a L} \approx 300 \mathrm{MeV}$
approximations can be continuously improved
limited by computational and human resources
A, B, C

LHPC $n_{f}=2+1$ mixed; arXiv:1001.3620 (updating PRD 2008, 0810.1933)

disconnected contributions are not included \leftrightarrow
only u-d is „exact"
$\overline{\mathrm{MS}}$ at $4 \mathrm{GeV}^{2}$

Chiral extrapolations of A, B, C

global simultaneous fits of A, B, C with common parameter <x>
+8 additional free parameters/LECs, to >80 lattice data points in each case (u-d and u+d)

LHPC $\mathrm{n}_{\mathrm{f}}=2+1$ mixed
arXiv:1001.3620 (updating PRD 2008)

only quark line connected contributions

Quark angular momentum

$$
J_{q}=\frac{1}{2}\left(A_{20}^{q}(0)+B_{20}^{q}(0)\right) \quad \text { from covariant BChPT extrapolations }
$$

Nucleon spin structure and spin sum rule

$$
J_{q}=\frac{1}{2}\left(A_{20}^{q}(0)+B_{20}^{q}(0)\right) \quad L_{q} \equiv J_{q}-\Delta \Sigma_{q} / 2
$$

Nucleon spin structure and spin sum rule

Contributions to the nucleon spin

$\overline{\mathrm{MS}}$ at $4 \mathrm{GeV}^{2}$

$\frac{1}{2} \stackrel{\star}{\approx} 0.238(8)_{\left[J^{u+d}\right]}+J_{g}=0.210(6)_{\left[\Delta \Sigma^{u+d} / 2\right]}+0.030(12)_{\left[L^{u+d}\right]}+J_{g}$
$M S$ at $4 \mathrm{GeV}^{2}$
compares well with study by Goloskokov\&Kroll 2008

Looks great, but ...

momentum fraction of quarks in the nucleon

$$
\langle P| \bar{q} \gamma^{\{\mu} D^{\nu\}} q|P\rangle=\bar{U}(P) \gamma^{\{\mu} P^{\nu\}} U(P)\langle x\rangle \leftrightarrow\langle x\rangle=A_{20}(0)=\int_{-1}^{+1} d x x q(x)=\langle x\rangle_{q}+\langle x\rangle_{\bar{q}}
$$

Transverse size of the nucleon - basic observations

correlations in x and t

$$
\overline{\mathrm{x}} \rightarrow 1 \Leftrightarrow \mathrm{n} \rightarrow \infty
$$

Generalized mean square radii of the nucleon

Pion mass dependence : Dirac mean square radius

$$
\text { Dirac and Pauli FFs }\left\langle P^{\prime}\right| \bar{q} \gamma_{\mu} q|P\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma_{\mu} F_{1}(t)+i \frac{\sigma_{\mu \nu} \Delta^{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P)
$$

Pion mass dependence of generalized radii for $n>1$

Conclusions, open questions, and perspectives I

> most chiral extrapolations still not quantitatively reliable

Conclusions, open questions, and perspectives II

lattice calculations and phenomenological/experimental studies of GPDs are mostly complementary

We observe strong correlations in x and t based on, e.g., generalized radii

Lattice results on spin sum rule, quark OAM are exciting and surprising; observe many cancellations
strong motivation for further phenomenological and experimental studies

Should lattice results be used to constrain GPD-models/parametrizations?

as always, I am indebted to my collaborators

M. Altenbuchinger, M. Procura, W. Weise
(T3x, TUM)

```
H. Meyer (CERN), B. Bistrovic, J. Bratt, M. Lin,
J.W. Negele, A. Pochinsky, S. Syritsyn (MIT)
R.G. Edwards, H.-W. Lin,
B. Musch, D.G. Richards (JLab)
K. Orginos (W\&M)
M. Engelhardt (New Mexico)
D.B. Renner (DESY Zeuthen), W. Schroers (Berlin)
```

(LHPC)
D. Brömmel (Southampton),
M. Diehl (DESY),
M. Göckeler, Th. Hemmert,
A. Schäfer (Regensburg U.)
M. Gürtler (TU München)
R. Horsley, J. Zanotti (Edinburgh U.)
Y. Nakamura (DESY Zeuthen)
P. Rakow (Liverpool U.)
D. Pleiter, G. Schierholz (DESY Zeuthen)
H. Stüben (ZIB)
(QCDSF/UKQCD)

References: LHPC PRD 77, 094502 (2008)
LHPC arXiv:1001.3620; QCDSF 0912.0167

