Global GPD fits (restricted to DVCS)

Dieter Müller

Ruhr-Universität Bochum

1

K. Kumerički, DM, K. Passek-Kumerički (KMP-K), hep-ph/0703179 GPD fits at NLO and NNLO of H1/ZEUS data

KMP-K, 0805.0152 [hep-ph]

constructive critics on ad hoc GPD model approach [lot of good news] first applications of dispersion integral approach

KMP-K, 0807.0159 [hep-ph]; **KM 0904.0458 [hep-ph]** flexible GPD model for small *x* and fits of H1/ZEUS data dispersion integral fits of HERMES and JLAB data

GPDs embed non-perturbative physics

GPDs appear in various hard exclusive processes,

e.g., hard electroproduction of photons (DVCS)

p

(q)

DVCS

hard scattering part

 $\mathcal{F}(\xi, \mathcal{Q}^2, t) = \int_{-1}^{1} dx \ C(x, \xi, \alpha_s(\mu), \mathcal{Q}/\mu) F(x, \xi, t, \mu) + O(\frac{1}{\mathcal{Q}^2})$

perturbation theory (our conventions/microscope)

universal (conventional)

GPD

higher twist

depends on approximation

[DM et. al (90/94) Radyushkin (96) **Ji (96)**]

GPD related hard exclusive processes

• Deeply virtual Compton scattering (clean probe)

 $ep \rightarrow e'p'\mu^+\mu^ \gamma p \rightarrow p'e^+e^-$

 $ep \rightarrow e'p'\gamma$

scanned area of the surface as a functions of lepton energy

• Hard exclusive meson production (flavor filter)

 $ep \rightarrow e'p'\pi$ $ep \rightarrow e'p'\rho$ $ep \rightarrow e'n\pi^+$ $ep \rightarrow e'n\rho^+$

twist-two observables:

cross sections

transverse target spin asymmetries

• etc.

Can one `measure' GPDs?

• **CFF** given as **GPD** convolution:

$$\mathcal{H}(\xi, t, \mathcal{Q}^2) \stackrel{\text{LO}}{=} \int_{-1}^{1} dx \, \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) H(x, \eta = \xi, t, \mathcal{Q}^2)$$
$$\stackrel{\text{LO}}{=} i\pi H^-(x = \xi, \eta = \xi, t, \mathcal{Q}^2) + \text{PV} \int_{0}^{1} dx \frac{2x}{\xi^2 - x^2} H^-(x, \eta = \xi, t, \mathcal{Q}^2)$$

H(x,x,t,Q²) viewed as "spectral function" (s-channel cut):

$$H^{-}(x, x, t, Q^{2}) \equiv H(x, x, t, Q^{2}) - H(-x, x, t, Q^{2}) \stackrel{\text{LO}}{=} \frac{1}{\pi} \Im \mathcal{F}(\xi = x, t, Q^{2})$$
[Frankfurt et al (97)
CFFS satisfy `**dispersion relations'**
(not the physical ones, threshold ξ_{0} set to 0)
 $\Re e \mathcal{F}(\xi, t, Q^{2}) = \frac{1}{\pi} PV \int_{0}^{1} d\xi' \left(\frac{1}{\xi - \xi'} \mp \frac{1}{\xi + \xi'}\right) \Im \mathcal{F}(\xi', t, Q^{2}) + \mathcal{C}(t, Q^{2})$

[Terayev (05)]

access to the **GPD** on the **cross-over line** $\eta = x$ (at LO)

Modeling & Evolution

The fitting problem

- many different observables (formed from cross sections)
- complex theoretical formulae, many modeling possibilities (many parameters)
- GPDs depends on form factors and PDFs, too (known only to a certain extend) 7
- i.e., to pin down GPDs one might fit to FF, structure functions, and exclusive data

Data set for unpolarized proton target $<<x>> \approx 10^{-3}$, $<|t|> \leq 0.8 \text{ GeV}^2$ • H1/ZEUS 98 [σ, dσ/dt] +1x6 [BCA(φ)] $\langle \langle Q^2 \rangle \rangle \approx 8 \text{ GeV}^2$ HERMES(02) 12+3 [BSA, sin(φ)] $0.05 \le \langle x \rangle \le 0.2, \quad \langle |t| \rangle \le 0.4 \text{ GeV}^2 \ \langle \langle Q^2 \rangle \rangle \approx 2.5 \text{ GeV}^2$ HERMES(08) 12x2 [BCA, cos(0 φ), cos(φ)] $12x2 [cos(2 \varphi), cos(3 \varphi)]$ HERMES(09) not included new BSA and BCA data $0.14 \le \langle x \rangle \le 0.35, \ \langle |t| \rangle \le 0.3 \, \text{GeV}^2$ • CLAS(07) 12x12 [BSA(ϕ)] $<<Q^2>> \approx 1.8 \text{ GeV}^2$ 40x12 [BSA(φ)] (large |t| or bad sta.) <x> =0.36, <|t|> ≤ 0.33 GeV² <<Q²>> ≈ 1.8 GeV² • HALL A(06) 12x24 [Δσ(φ)] 3x24 [σ(φ)] How to analyze φ dependence? fit within assumed functional form [CLAS(07)] fit with respect to dominant and higher harmonics [HERMES(08)] utilize Fourier analyze (with or without additional weight) [BMK(01)]

equivalent results for CLAS data with small stat. errors

DVCS fits for H1 and ZEUS data

DVCS cross section measured at small $x_{
m Bj} pprox 2\xi = rac{2Q^2}{2W^2 + Q^2}$ $40 {
m GeV} \lesssim W \lesssim 150 {
m GeV}, \quad 2 {
m GeV}^2 \lesssim {\cal Q}^2 \lesssim 80 {
m GeV}^2, \quad |t| \lesssim 0.8 {
m GeV}^2$ predicted by $\frac{d\sigma}{dt}(W,t,\mathcal{Q}^2) \approx \frac{4\pi\alpha^2}{\mathcal{Q}^4} \frac{W^2\xi^2}{W^2 + \mathcal{Q}^2} \left[|\mathcal{H}|^2 - \frac{\Delta^2}{4M_p^2} \left|\mathcal{E}|^2 + \left|\widetilde{\mathcal{H}}\right|^2 \right] \left(\xi,t,\mathcal{Q}^2\right) \Big|_{\xi = \frac{\mathcal{Q}^2}{2W^2 + \mathcal{Q}^2}}$

suppressed contributions $\langle 0.05 \rangle$ relative $O(\xi)$

- LO data could not be described before 2008
- NLO works with ad hoc GPD models [Freund, McDermott (02)] results strongly depend on employed PDF parameterization

effective functional form at small x:

PDFs:
$$q^{\text{sea}}(\xi, \mathcal{Q}) = n(\mathcal{Q})\xi^{-\alpha(\mathcal{Q})}, \quad \alpha \sim 1, \quad F^{\text{sea}}(0) = 1$$

GPDs:

$$H = r(\eta/x = 1, \mathcal{Q})F^{\text{sea}}(t)\xi^{\alpha'(t,\mathcal{Q})}q^{\text{sea}}(\xi, \mathcal{Q})$$
skewness
transverse
distribution

neglected in "standard" Regge phenomenology

?
$$E(\xi,\xi,t,\mathcal{Q})$$

chromo-magnetic "pomeron" might be sizeable (instantons)

pQCD suggests pomeron intercept

qualitative understanding of *E* is needed (not only for Ji's spin sum rule)

$$B = \int_0^1 dx \, x E(x, \eta, t, \mathcal{Q})$$

good DVCS fits at LO, NLO, and NNLO with flexible GPD ansatz

quark skewness ratio from DVCS fits @ LO

- @LO the conformal ratio is ruled out for sea quark GPD
- a generically zero-skewness effect over a large Q² lever arm
- scaling violation consistent with pQCD prediction
- this zero-skewness effect is non-trivial to realize in conformal space (SO(3) sibling poles are required)

• CFF *H* posses ``pomeron behavior'' $\xi^{-\alpha(Q) - \alpha'(Q)t}$

α increases with growing Q²
 α' decreases growing Q²

• *t*-dependence: exponential shrinkage is disfavored $(\alpha' \approx 0)$ dipole shrinkage is visible $(\alpha' \approx 0.15 \text{ at } Q^2 = 4 \text{ GeV}^2)$

(normalized) profile functions

Beam charge asymmetry

• set $E_{sea} \propto H_{sea}$, use anomalous gravitomagnetic moment $B_{sea} = \int_0^1 dx \, x E_{sea}$ as parameter

Dispersion relation fits to unpolarized DVCS

model of GPD H(x,x,t) within DD motivated ansatz at Q²=2 GeV²

sea quarks (taken from LO fits)

 $n = 0.68, \ r = 1, \ lpha(t) = 1.13 + 0.15t/{
m GeV}^2, \ m^2 = 0.5 {
m GeV}^2, \ p = 2$

valence quarks

$$n = 1.0, \ \alpha(t) = 0.43 + 0.85t/\text{GeV}^2, \ p = 1$$

flexible parameterization of subtraction constant

36 + 4 data points quality of *global fit* is good

$$\mathcal{D}(t) = \frac{-C}{(1-t/M_c^2)^2}$$

15

$$\chi^2/{
m d.o.f.} \approx 1$$

Global GPD fit example: HERMES & JLAB

• real part of *H* has a zero: Can it be revealed by COMPASS?

✓ large negative value of $\Re \mathcal{H} @ x=1$ arises from substraction constant (so-called *D-term*, [Goeke, Polyakov, Vanderhaeghen (01); lattice (≥ 07)])

DVCS observables at COMPASS (unpolarized target) $d\sigma^{\downarrow+}(\phi), \ d\sigma^{\uparrow-}(\phi), \ d\sigma^{\downarrow+}(\phi) \pm d\sigma^{\downarrow+}(\pm\phi), \ d\sigma^{\downarrow+}(\phi) \pm d\sigma^{\uparrow-}(\pm\phi),$

• revealing real part of $\mathcal H$

 $d\sigma^{\downarrow+}(\phi) - d\sigma^{\uparrow-}(\phi)$ $A_{\rm BCS} = \frac{d\sigma^{\downarrow+}(\phi) - d\sigma^{\uparrow-}(\phi)}{d\sigma^{\downarrow+}(\phi) + d\sigma^{\uparrow-}(\phi)}$

• revealing imaginary part of ${\cal H}$

$$d\sigma^{\downarrow+}(\phi) - d\sigma^{\downarrow+}(-\phi)$$
$$A_{\rm BSA} = \frac{d\sigma^{\downarrow+}(\phi) - d\sigma^{\downarrow+}(-\phi)}{d\sigma^{\downarrow+}(\phi) + d\sigma^{\downarrow+}(-\phi)}$$

 φ

A GPD fit agenda (a personal view)

decomposition of twist-two CFFs (with and without twist-two dominance hypothesis)

- dispersion integral fits (least square method) on the full set of fixed target data
- data filtering is crucial to get rid of the twist-two dominance hypothesis

GPD model fits (based on the least square method)

- fully flexible GPD model in conformal moment space up to NNLO
- (reggeized) spectator quark models up (to NLO) (given in double distribution representation, positivity constraints are implemented)
- holographic GPD models, such as Radyushkin double distribution model

neural networks (representing and extracting CFFs or GPDs)

- to get rid of theoretical biases
- error propagation/estimates

Towards realistic GPD (TMD) models

 $\frac{k+p_1+m}{(k+p_1)^2-m^2}$

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi - \frac{1}{2} \phi \left(\partial^2 + \lambda^2 \right) \phi + g \bar{\psi} \psi \phi$$

struck spin-1/2 quark

collective scalar diquark spectator coupling knows about spin

 $\delta(xP^+ - P^+ - 2k^+)$

Diagrammatic approach: via covariant time ordered perturbation theory

LC- Hamiltonian approach

dered $(k+p_1)^2 - m^2$ $(k+p_2)^2 - m^2$ $(k+p_$

 $k^{\mu} \rightarrow (k^+, k^-, \mathbf{k}_{\perp}), \ k^{\pm} = k^0 \pm k^3, \ \mathbf{k}_{\perp} = (k^1, k^2).$

integrate out minus component to find LCWF

parton number conserved LCWF

(outer region)

parton number violating LCWF

(central region)

hard exclusive leptoproduction

- possesses a rich structure, allowing to access various CFFs/GPDs
- it is elaborated in NLO and offers a new insight in QCD
- DVCS is widely considered as a theoretical clean process
- they address our partonic/QCD understanding

GPDs are intricate and (thus) a promising tool

COMPASS DVCS physics is complementary to, e.g., JLAB 12@GeV
 unpolarized target: revealing the real and imaginary part of H
 needed to reveal *t*- and skewness dependence of H GPD
 transversally polarized target: allows to access E (expected to be sizeable)

tools/technology for next generation of global fits are required: to quantify the partonic picture and to get a better QCD understanding

Back up slides are coming

Photon leptoproduction $e^{\pm}N \rightarrow e^{\pm}N\gamma$ measured by **H1, ZEUS, HERMES, CLAS, HALL A** collaborations planed at **COMPASS, JLAB@12GeV**, perhaps at ?? EIC,

interference of *DVCS* and *Bethe-Heitler* processes

relations among harmonics and GPDs are based on 1/Q expansion: (all harmonics are expressed by twist-2 and -3 GPDs) [Diehl et. al (97)

$$\begin{cases} c_1 \\ s_1 \end{cases}^{\mathcal{I}} \propto \frac{\Delta}{\mathcal{Q}} \text{tw-2}(\text{GPDs}) + O(1/\mathcal{Q}^3), \qquad c_0^{\mathcal{I}} \propto \frac{\Delta^2}{\mathcal{Q}^2} \text{tw-2}(\text{GPDs}) + O(1/\mathcal{Q}^4), \\ \begin{cases} c_2 \\ s_2 \end{cases}^{\mathcal{I}} \propto \frac{\Delta^2}{\mathcal{Q}^2} \text{ tw-3}(\text{GPDs}) + O(1/\mathcal{Q}^4), \qquad \begin{cases} c_3 \\ s_3 \end{cases}^{\mathcal{I}} \propto \frac{\Delta \alpha_s}{\mathcal{Q}} (\text{tw-2})^{\text{T}} + O(1/\mathcal{Q}^3), \\ \end{cases}$$
$$c_0^{\text{CS}} \propto (\text{tw-2})^2, \qquad \begin{cases} c_1 \\ s_1 \end{cases}^{\text{CS}} \propto \frac{\Delta}{\mathcal{Q}} (\text{tw-2})(\text{tw-3}), \qquad \begin{cases} c_2 \\ s_2 \end{cases}^{\text{CS}} \propto \alpha_s (\text{tw-2})(\text{tw-2})^{\text{GT}} \end{cases}$$

setting up the **perturbative framework**:

[Belitsky, DM (97); Mankiewicz et. al (97); Ji.Osborne (98)]

twist-two coefficient functions at next-to-leading order Ji,Osborne (98)]

vevolution kernels at *next-to-leading* order [Belitsky, DM, Freund (01)]

[KMP-K &

- next-to-next-to-leading order in a specific conformal subtraction scheme Schaefer 06]
- *twist-three* including quark-gluon-quark correlation at LO [Anikin,Teryaev, Pire (00); Belitsky DM (00); Kivel et. al]
- ✓ partial twist-three sector at next-to-leading order [Kivel, Mankiewicz (03)]
- ✓ `target mass corrections' (not well understood) [Belitsky DM (01)]

Overview: GPD representations

light cone wave function overlap

(Hamiltonian approach in light-cone quantization)

SL(2,R) (conformal) expansion

(series of local operators)

one version is called Shuvaev transformation, used in `dual' (*t*-channel) GPD parameterization

Diehl, Feldmann, Jakob, Kroll (98,00) Diehl, Brodsky, Hwang (00)

Radyushkin (97); Belitsky, Geyer, DM, Schäfer (97); DM, Schäfer (05);

Shuvaev (99,02); Noritzsch (00) Polyakov (02,07)

each representation has its own *advantages*, 27 however, they are *equivalent* (clearly spelled out in [Hwang, DM 07])

A partonic duality interpretation

0.5

-0.5

 $\omega(x, \eta)$

-0.5

 $-\omega(x)$

0.5

 $\omega(x, -\eta)$

 $+\omega(x,\eta)$

quark GPD (anti-quark $x \to -x$): $F = \theta(-\eta \le x \le 1) \omega(x, \eta, \Delta^2) + \theta(\eta \le x \le 1) \omega(x, -\eta, \Delta^2)$

$$\omega\left(x,\eta,\Delta^2\right) = \frac{1}{\eta} \int_0^{\frac{x+\eta}{1+\eta}} dy \, x^p f(y,(x-y)/\eta,\Delta^2)$$

dual interpretation on partonic level:

(partonic) `quantum' numbers in GPD representations

	name	's-channel' variable	't-channel' variable
	GPD	PMF x	PMF ratio η
	DD	PMF y	PMF z
	CPWE	conformal spin $j + 2$	PMF ratio η
	'forward-like' CPWE	forward-like PMF z	PMF ratio η
	Mellin-Barnes CPWE	conformal spin $j + 2$	PMF ratio η
	'dual' CPWE	forward-like PMF z	$\rho = j + 2 - J$
	'dual' Mellin-Barnes CPWE	conformal spin $j + 2$	t-channel AM J
	SO(3)-PWE	PMF x	t-channel AM J
$\Pi(x,x,t)$	1 0.8 0.6 0.4 0.4 0.2 0 0.2 0.4 0.6	Pabout representation is not so essential should be replaced by How a GPD looks like on it cross-over trajectory ?	
	0 0.2 0.4 0.6 0 V	0.8 1	

X

SL(2,R) representations for GPDs

support is a consequence of Poincaré invariance (polynomiality)

$$H_j(\eta, t, \mu^2) = \int_{-1}^1 dx \, c_j(x, \eta) H(x, \eta, t, \mu^2) \,, \qquad c_j(x, \eta) = \eta^j C_j^{3/2}(x/\eta)$$

• conformal moments evolve autonomous (to LO and beyond in a special scheme)

$$\mu \frac{d}{d\mu} H_j(\eta, t, \mu^2) = -\frac{\alpha_s(\mu)}{2\pi} \gamma_j^{(0)} H_j(\eta, t, \mu^2)$$

• inverse relation is given as series of mathematical distributions:

$$H(x,\eta,t) = \sum_{j=0}^{\infty} (-1)^j p_j(x,\eta) H_j(\eta,t) , \ p_j(x,\eta) \propto \theta(|x| \le \eta) \frac{\eta^2 - x^2}{\eta^{j+3}} C_j^{3/2}(-x/\eta)$$

various ways of resummation were proposed:

smearing method [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)]

- mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)]
- dual parameterization (a mixture of both) [M. Polyakov, A. Shuvaev (02)]
- based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)]
- Mellin-Barnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]

GPD ansatz at small x from t-channel view

- At short distance a quark/anti-quark state is produced, labeled by *conformal spin j*+2
- ✤ they form an intermediate mesonic state with total angular momentum J strength of *coupling* is $f_j^J, J \le j+1$

mesons propagate with

$$rac{1}{m^2(J)-t} \propto rac{1}{J-lpha(t)}$$

decaying into a nucleon anti-nucleon pair with given angular momentum *J*, described by an *impact form factor*

$$F_{j}^{J}(t) = \frac{f_{j}^{J}}{J - \alpha(t)} \frac{1}{(1 - \frac{t}{M^{2}(J)})^{p}}$$

 GPD E is zero if chiral symmetry holds (partial waves are Gegenbauer polynomials with index 3/2)

D-term arises from the SO(3) partial wave J=j+1 ($j \rightarrow -1$)

31

Can the skewness function be constrained from lattice ?

• relation among measurable and GPD Mellin moments at $\eta=0$:

$$\int_{0}^{1} d\xi \,\xi^{j} \Im \mathcal{F}(\xi, t, \mathcal{Q}^{2}) \stackrel{\text{LO}}{=} \pi f_{j}(t, \mathcal{Q}^{2}) \left[1 + \delta_{j}(t, \mathcal{Q}^{2})\right]$$

• deviation factors:
$$\delta_j(t,\mu^2) = \frac{\int_0^1 dx \, x^j S(x,t,\mu^2) F(x,\eta=0,t,\mu^2)}{\int_0^1 dx \, x^j F(x,\eta=0,t,\mu^2)}$$

are given by a series of operator expectation values with increasing spin j+n+1

$$\delta_j(t,\mu^2) = \sum_{\substack{n=2\\\text{even}}}^{\infty} \frac{f_{j+n}^{(n)}(t,\mu^2)}{f_j(t,\mu^2)}, \quad f_j^{(n)}(t,\mu^2) = \frac{1}{n!} \frac{d^n}{d\eta^n} f_j(\eta,t,\mu^2) \Big|_{\eta=0}$$

• lattice can evaluate j=0,1,2,(3), i.e., n=2: $\delta_0(t,\mu^2 = 4 \text{ GeV}^2) \approx 0.2+?$ thanks to Ph. Hägler

• ? wrong expectation from evolution:

the analog small x prediction is ruled out [Shuvaev et al. (99)]

$$\delta_j \sim \frac{2^{j+1}\Gamma(5/2+j)}{\Gamma(3/2)\Gamma(3+j)} - 1$$

$$\delta_0 \sim 0.5 \qquad \delta_1 \sim 1.5$$

32

Strategies to analyze DVCS data **GPD** model approach:

(first decade)

ad hoc modeling: VGG code [Goeke et. al (01) based on Radyuskin's DDA] BKM model [Belitsky, Kirchner, DM (01) based on RDDA] `aligned jet' model [Freund, McDermott, Strikman (02)] Kroll/Goloskokov (05) based on RDDA [not utilized for DVCS] `dual' model [Polyakov,Shuvaev 02;Guzey,Teckentrup 06;Polyakov 07] " -- " [KMP-K (07) in MBs-representation] Bernstein polynomials [Liuti et. al (07)]

dynamical models: not applied [Radyuskin et.al (02); Tiburzi et.al (04); Hwang DM (07)]...

flexible models: any representation by including *unconstrained* degrees of freedom (for fits) KMP-K (07/08) for H1/ZEUS in MBs-representation

What is the physical content of *`invisible'* (*unconstrained*) degrees of freedom?

Extracting CFFs from data: real and imaginary part

0. analytic formulae [BMK 01]

- i. (almost) without modeling [Guidal, Moutarde (08-10)]
- ii. dispersion integral fits [KMP-K (08),KM (08/09)] iii. flexible GPD modeling [KM (08/09)]