Global GPD fits (restricted to DVCS)

Dieter Müller

Ruhr-Universität Bochum

K. Kumerički, DM, K. Passek-Kumerički (KMP-K), hep-ph/0703179 GPD fits at NLO and NNLO of H1/ZEUS data KMP-K, 0805.0152 [hep-ph] constructive critics on ad hoc GPD model approach [lot of good news] first applications of dispersion integral approach KMP-K, 0807.0159 [hep-ph]; KM 0904.0458 [hep-ph] flexible GPD model for small x and fits of H1/ZEUS data dispersion integral fits of HERMES and JLAB data

GPDs embed non-perturbative physics

GPDs appear in various hard exclusive processes,
[DM et. al (90/94) Radyushkin (96) Ji (96)]
e.g., hard electroproduction of photons (DVCS)

$\mathcal{F}\left(\xi, \mathcal{Q}^{2}, t\right)=\int_{-1}^{1} d x C\left(x, \xi, \alpha_{s}(\mu), \mathcal{Q} / \mu\right) F(x, \xi, t, \mu)+O\left(\frac{1}{\mathcal{Q}^{2}}\right)$

CFF
Compton form factor
observable
hard scattering part
perturbation theory (our conventions/microscope)
GPD
universal
(conventional)
higher twist
depends on approximation

GPD related hard exclusive processes

- Deeply virtual Compton scattering (clean probe)
$e p \rightarrow e^{\prime} p^{\prime} \gamma$ $e p \rightarrow e^{\prime} p^{\prime} \mu^{+} \mu^{-}$ $\gamma p \rightarrow p^{\prime} e^{+} e^{-}$

- Hard exclusive meson production (flavor filter) $e p \rightarrow e^{\prime} p^{\prime} \pi$ $e p \rightarrow e^{\prime} p^{\prime} \rho$ $e p \rightarrow e^{\prime} n \pi^{+}$ $e p \rightarrow e^{\prime} n \rho^{+}$
- etc.

scanned area of the surface as a functions of lepton energy

$$
e p \rightarrow e^{\prime} p^{\prime} \mu^{+} \mu^{-}
$$

twist-two observables:
cross sections
transverse target spin asymmetries
hard exclusive

Can one ‘mensure' GPDs?

- CFF given as GPD convolution:

$$
\begin{aligned}
\mathcal{H}\left(\xi, t, \mathcal{Q}^{2}\right) & \stackrel{\mathrm{LO}}{=} \int_{-1}^{1} d x\left(\frac{1}{\xi-x-i \epsilon}-\frac{1}{\xi+x-i \epsilon}\right) H\left(x, \eta=\xi, t, \mathcal{Q}^{2}\right) \\
& \stackrel{\mathrm{LO}}{=} i \pi H^{-}\left(x=\xi, \eta=\xi, t, \mathcal{Q}^{2}\right)+\mathrm{PV} \int_{0}^{1} d x \frac{2 x}{\xi^{2}-x^{2}} H^{-}\left(x, \eta=\xi, t, \mathcal{Q}^{2}\right)
\end{aligned}
$$

- $H\left(x, x, t, Q^{2}\right)$ viewed as "spectral function" (s-channel cut):

$$
H^{-}\left(x, x, t, Q^{2}\right) \equiv H\left(x, x, t, Q^{2}\right)-H\left(-x, x, t, Q^{2}\right) \stackrel{\text { LO }}{=} \frac{1}{\pi} \Im m \mathcal{F}\left(\xi=x, t, Q^{2}\right)
$$

- CFFs satisfy `dispersion relations' (not the physical ones, threshold ξ_{0} set to 0)
[Frankfurt et al (97)
Chen (97)
Terayev (05)
KMP-K (07)
Diehl, Ivanov (07)]

$$
\Re \mathrm{e} \mathcal{F}\left(\xi, t, Q^{2}\right)=\frac{1}{\pi} \mathrm{PV} \int_{0}^{1} d \xi^{\prime}\left(\frac{1}{\xi-\xi^{\prime}} \mp \frac{1}{\xi+\xi^{\prime}}\right) \Im \mathrm{m} \mathcal{F}\left(\xi^{\prime}, t, Q^{2}\right)+\mathcal{C}\left(t, Q^{2}\right)
$$

[Terayev (05)]
GCGOSS to the GPD on the cross-over line $\eta=x$ (at LO)

Modeling \& Evolution

 outer region governs the evolution at the cross-over trajectory$$
\mu^{2} \frac{d}{d \mu^{2}} H\left(x, x, t, \mu^{2}\right)=\int_{x}^{1} \frac{d y}{x} V\left(1, x / y, \alpha_{s}(\mu)\right) H\left(y, x, \mu^{2}\right)
$$

GPD at $\eta=x$ is `measurable’ (LO)

The fitting problem

- many different observables (formed from cross sections)
- complex theoretical formulae, many modeling possibilities (many parameters)
${ }^{-}$GPDs depends on form factors and PDFs, too (known only to a certain extend) ${ }_{7}$
${ }^{\circ}$ i.e., to pin down GPDs one might fit to FF, structure functions, and exclusive data

Data set for unpolarized proton target

- H1/ZEUS $98[\sigma, d \sigma / d t]+1 \times 6[\mathrm{BCA}(\varphi)] \quad \ll x \gg \approx 10^{-3}, \quad \begin{gathered}\langle | t \mid>\leq 0.8 \mathrm{GeV}^{2} \\ \ll Q^{2} \gg \approx 8 \mathrm{GeV}^{2}\end{gathered}$
- HERMES(02) 12+3 [BSA, $\sin (\varphi)]$
- HERMES(08) $\begin{array}{cc}12 \times 2[B C A, \cos (0 \varphi), \cos (\varphi)] \\ 12 \times 2[\cos (2 \varphi), \cos (3 \varphi)]\end{array} \quad 0.05 \leq\langle x\rangle \leq 0.2, \begin{gathered}<|t|>\leq 0.4 \mathrm{GeV}^{2} \\ \ll Q^{2} \gg \approx 2.5 \mathrm{GeV}^{2}\end{gathered}$
- HERMES(09) not included new BSA and BCA data

- HALL A(06) $\begin{array}{cc}12 \times 24\left[\begin{array}{ll}{[\Delta(\varphi)]} \\ 3 \times 24 \\ & {[\sigma(\varphi)]}\end{array} \quad<x>=0.36,<|t|>\leq 0.33 \mathrm{GeV}^{2}\right. \\ \ll Q^{2} \gg \approx 1.8 \mathrm{GeV}^{2}\end{array}$

How to analyze φ dependence?

- fit within assumed functional form [CLAS(07)]
- fit with respect to dominant and higher harmonics [HERMES(08)]
- utilize Fourier analyze (with or without additional weight) [BMK(01)]
equivalent results for CLAS data with small stat. errors

DVCS fits for H1 and ZEUS data

DVCS cross section measured at small $x_{\mathrm{Bj}} \approx 2 \xi=\frac{2 \mathcal{Q}^{2}}{2 W^{2}+\mathcal{Q}^{2}}$

$$
40 \mathrm{GeV} \lesssim W \lesssim 150 \mathrm{GeV}, \quad 2 \mathrm{GeV}^{2} \lesssim \mathcal{Q}^{2} \lesssim 80 \mathrm{GeV}^{2}, \quad|t| \lesssim 0.8 \mathrm{GeV}^{2}
$$

predicted by

$$
\begin{aligned}
\frac{d \sigma}{d t}\left(W, t, \mathcal{Q}^{2}\right) & \left.\approx \frac{4 \pi \alpha^{2}}{\mathcal{Q}^{4}} \frac{W^{2} \xi^{2}}{W^{2}+\mathcal{Q}^{2}}\left[|\mathcal{H}|^{2}-\frac{\Delta^{2}}{4 M_{\mathrm{p}}^{2}}|\mathcal{E}|^{2}+|\widetilde{\mathcal{H}}|^{2}\right]\left(\xi, t, \mathcal{Q}^{2}\right)\right|_{\xi=\frac{\mathcal{Q}^{2}}{2 W^{2}+\mathcal{Q}^{2}}} \\
& \text { suppressed contributions <<0.05>>> } \overbrace{0} \text { relative } O(\xi)
\end{aligned}
$$

- LO data could not be described before 2008
- NLO works with ad hoc GPD models [Freund, McDermott (02)] results strongly depend on employed PDF parameterization

effective functional form at small x :

PDFs: $\quad q^{\text {sea }}(\xi, \mathcal{Q})=n(\mathcal{Q}) \xi^{-\alpha(\mathcal{Q})}, \quad \alpha \sim 1, \quad F^{\text {sea }}(0)=1$
GPDs: $\quad H=r(\eta / x=1, \mathcal{Q}) F^{\text {sea }}(t) \xi^{\alpha^{\prime}(t, \mathcal{Q})} q^{\text {sea }}(\xi, \mathcal{Q})$
skewness transverse
distribution
$? E(\xi, \xi, t, \mathcal{Q})$
neglected in "standard" Regge phenomenology chromo-magnetic "pomeron" might be sizeable (instantons)
pQCD suggests pomeron intercept
qualitative understanding of E is needed (not only forJi's spin sum rule)

$$
B=\int_{0}^{1} d x x E(x, \eta, t, \mathcal{Q})
$$

good DVCS fits at LO, NLO, and NNLO with flexible GPD ansatz

quark skewness ratio from DVCS fits @ LO

- @LO the conformal ratio is ruled out for sea quark GPD
- a generically zero-skewness effect over a large Q^{2} lever arm
- scaling violation consistent with pQCD prediction
- this zero-skewness effect is non-trivial to realize in conformal space (SO(3) sibling poles are required)
- CFF H posses "’pomeron behavior" $\xi^{-\alpha(Q)-\alpha ’(Q) t}$
$\checkmark \alpha$ increases with growing Q^{2}
$\checkmark \alpha^{\prime}$ decreases growing Q^{2}
- t-dependence: exponential shrinkage is disfavored $\quad\left(\alpha^{\prime} \approx 0\right)$
dipole
shrinkage is visible ($\alpha^{\prime} \approx 0.15$ at $\mathrm{Q}^{2}=4 \mathrm{GeV}^{2}$)
- (normalized) profile functions
$\rho \propto \int d^{2} \vec{\Delta}_{\perp} e^{i \vec{b} \cdot \vec{\Delta}_{\perp}} H\left(x, 0, t=-\vec{\Delta}_{\perp}^{2}\right)$

Beam charge asymmetry

$$
\begin{aligned}
B C A & =\frac{d \sigma_{e^{+}}-d \sigma_{e^{-}}}{d \sigma_{e^{+}}+d \sigma_{e^{-}}}=\frac{\mathcal{T}_{\text {Interference }}}{\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}+\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}} \\
& \propto F_{1}(t) \Re \mathrm{e} \mathcal{H}+\frac{|t|}{4 M^{2}} F_{2}(t) \Re \mathrm{E} \mathcal{E} \quad \begin{array}{c}
\text { the unknown in Ji's } \\
\text { nucleon spin sum rule }
\end{array}
\end{aligned}
$$

- set $E_{\text {sea }} \propto H_{\text {sea, }}$, use anomalous gravitomagnetic moment $B_{\text {sea }}=\int_{0}^{1} d x x E_{\text {sea }}$ as parameter

unfortunately, H 1 data do not allow to access $B_{\text {sea }}$

Dispersion relation fits to unpolarized DVCS

- model of GPD $H(x, x, t)$ within DD motivated ansatz at $Q^{2}=2 \mathrm{GeV}^{2}$
fixed: PDF normalization eff. Reage pole large t-counting rules
free:
sea quarks (taken from LO fits)
$n=0.68, \quad r=1, \quad \alpha(t)=1.13+0.15 t / \mathrm{GeV}^{2}, \quad m^{2}=0.5 \mathrm{GeV}^{2}, \quad p=2$
valence quarks

$$
n=1.0, \quad \alpha(t)=0.43+0.85 t / \mathrm{GeV}^{2}, \quad p=1
$$

flexible parameterization of subtraction constant

$$
\mathcal{D}(t)=\frac{-C}{\left(1-t / M_{c}^{2}\right)^{2}}
$$

+ pion-pole contribution
$36+4$ data points quality of global fit is good

Global GPD fit example: HERMES \& JLAB

A qualitative interpretation of first global fits

$\widetilde{H}(x, x, t)$ is two x bigger as $H(x, x, t)$ in valence region (sounds wrong)
$>$ ansatz is to improve (or to reinterpret)
$>$ longitudinal polarized proton data will help to pin down \mathcal{H}
$>$ real part of \mathcal{H} is crucial to reveal $H(x, x, t)$

- real part of \mathcal{H} has a zero: Can it be revealed by COMPASS?
\checkmark large negative value of $\mathcal{R e} \mathcal{H} @ x=1$ arises from substraction constant (so-called D-term, [Goeke, Polyakov, Vanderhaeghen (01); lattice (≥ 07)])

DVCS observables at COMPASS (unpolarized target)

$d \sigma^{\downarrow+}(\phi), \quad d \sigma^{\uparrow-}(\phi), \quad d \sigma^{\downarrow+}(\phi) \pm d \sigma^{\downarrow+}(\pm \phi), \quad d \sigma^{\downarrow+}(\phi) \pm d \sigma^{\uparrow-}(\pm \phi)$,

- revealing real part of \mathcal{H}

$$
\begin{aligned}
& d \sigma^{\downarrow+}(\phi)-d \sigma^{\uparrow-}(\phi) \\
& A_{\mathrm{BCS}}=\frac{d \sigma^{\downarrow+}(\phi)-d \sigma^{\uparrow-}(\phi)}{\sigma^{\downarrow+}(\phi)+d \sigma^{\uparrow-}(\phi)}
\end{aligned}
$$

- revealing imaginary part of \mathcal{H}

$$
d \sigma^{\downarrow+}(\phi)-d \sigma^{\downarrow+}(-\phi)
$$

$A_{\mathrm{BSA}}=\frac{d \sigma^{\downarrow+}(\phi)-d \sigma^{\downarrow+}(-\phi)}{d \sigma^{\downarrow+}(\phi)+d \sigma^{\downarrow+}(-\phi)}$

A GPD fit agenda (a personal view)

 decomposition of twist-two CFFs (with and without twist-two dominance hypothesis)- dispersion integral fits (least square method) on the full set of fixed target data
- data filtering is crucial to get rid of the twist-two dominance hypothesis

GPD model fits (based on the least square method)

- fully flexible GPD model in conformal moment space up to NNLO
- (reggeized) spectator quark models up (to NLO) (given in double distribution representation, positivity constraints are implemented)
- holographic GPD models, such as Radyushkin double distribution model
neural networks (representing and extracting CFFs or GPDs)
- to get rid of theoretical biases
- error propagation/estimates

Towards realistic GPD (TMD) models

$$
\begin{aligned}
& \mathcal{L}=\bar{\psi}(i \not \partial-m) \psi-\frac{1}{2} \phi\left(\partial^{2}+\lambda^{2}\right) \phi+g \bar{\psi} \psi \phi \\
& \text { struck spin-1/2 quark } \\
& \text { collective scalar } \\
& \text { diquark spectator } \\
& \text { coupling knows } \\
& \text { about spin }
\end{aligned}
$$

Diagrammatic approach:

 via covariant time ordered perturbation theoryLC- Hamiltonian approach

$$
k^{\mu} \rightarrow\left(k^{+}, k^{-}, \mathbf{k}_{\perp}\right), k^{ \pm}=k^{0} \pm k^{3}, \mathbf{k}_{\perp}=\left(k^{1}, k^{2}\right)
$$

integrate out minus component to find LCWF
parton number conserved LCWF
(outer region)
parton number violating LCWF
(central region)

\checkmark skewness effect:
(as expected: [Hwang, DM (07)]

\checkmark enhanced $|\mathcal{H}|$ @ large $X=x_{\mathrm{Bj}}$:
[Guidal, Morrow; Hwang, DM (07)])

$>$ femto-photography [Pire, Ralston (01)]

$$
b_{\perp}^{\mathrm{pseudo}}=\left.\sqrt{4 \frac{d}{d t} \ln H(x, x, t)}\right|_{t=0}
$$

viewed as transverse `pseudo' width [DM] amplitude interpretation [Diehl (02)] (distance of struck quark to spectator system) recall of transverse width [Burkardt (02)]

$$
b_{\perp}=\left.\sqrt{4 \frac{d}{d t} \ln H(x, 0, t)}\right|_{t=0}
$$

Summary

hard exclusive leptoproduction

- possesses a rich structure, allowing to access various CFFs/GPDs
- it is elaborated in NLO and offers a new insight in QCD
- DVCS is widely considered as a theoretical clean process
- they address our partonic/QCD understanding

GPDs are intricate and (thus) a promising tool
> COMPASS DVCS physics is complementary to, e.g., JLAB 12@GeV
> unpolarized target: revealing the real and imaginary part of H

- needed to reveal t - and skewness dependence of H GPD
> transversally polarized target: allows to access E (expected to be sizeable)
tools/technology for next generation of global fits are required:
to quantify the partonic picture and to get a better QCD understanding

Back up slides are coming

Photon Ieptoproduction $e^{ \pm} N \rightarrow e^{ \pm} N \gamma$

 measured by H1, ZEUS, HERMES, CLAS, HALL A collaborations planed at COMPASS, JLAB@12GeV, perhaps at ?? EIC,$$
\frac{d \sigma}{d x_{\mathrm{Bj}} d y d\left|\Delta^{2}\right| d \phi d \varphi}=\frac{\alpha^{3} x_{\mathrm{Bj}} y}{16 \pi^{2} \mathcal{Q}^{2}}\left(1+\frac{4 M^{2} x_{B j}^{2}}{\mathcal{Q}^{2}}\right)^{-1 / 2}\left|\frac{\mathcal{T}}{e^{3}}\right|^{2}
$$

$$
\begin{aligned}
x_{\mathrm{Bj}} & =\frac{\mathcal{Q}^{2}}{2 P_{1} \cdot q_{1}} \approx \frac{2 \xi}{1+\xi}, \\
y & =\frac{P_{1} \cdot q_{1}}{P_{1} \cdot k}, \\
\Delta^{2} & =t \text { (fixed, small), } \\
\mathcal{Q}^{2} & =-q_{1}^{2} \quad\left(>1 G_{24} \mathrm{~V}^{2}\right),
\end{aligned}
$$

interference of DVCS and Bethe-Heitler processes

12 Compton form factors $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}} \cdots$ elastic form factors F_{1}, F_{2} (helicity amplitudes)

$$
\begin{array}{ll}
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}=\frac{e^{6}\left(1+\epsilon^{2}\right)^{-2}}{x_{\mathrm{Bj}}^{2} y^{2} \Delta^{2} \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left\{c_{0}^{\mathrm{BH}}+\sum_{n=1}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi)\right\}, & \begin{array}{l}
\text { exactly known } \\
\text { (LO, QED) }
\end{array} \\
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}=\frac{e^{6}}{y^{2} \mathcal{Q}^{2}}\left\{c_{0}^{\mathrm{DVCS}}+\sum_{n=1}^{2}\left[c_{n}^{\mathrm{DVCS}} \cos (n \phi)+s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right]\right\}, \underbrace{\frac{1}{\text { harmonics }}}_{\text {helicity ampl. }}
\end{array}
$$

$$
\mathcal{I}=\frac{ \pm e^{6}}{x_{\mathrm{Bj}} y^{3} \Delta^{2} \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left\{c_{0}^{\mathcal{I}}+\sum_{n=1}^{3}\left[c_{n}^{\mathcal{I}} \cos (n \phi)+s_{n}^{\mathcal{I}} \sin (n \phi)\right]\right\} .
$$

harmonics
relations among harmonics and GPDs are based on $1 / \mathcal{Q}$ expansion: (all harmonics are expressed by twist-2 and -3 GPDs) [Diehl et. al (97)

Belitsky, DM, Kirchner (01)]

$$
\begin{aligned}
& \left\{\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right\}^{\mathcal{I}} \propto \frac{\Delta}{\mathcal{Q}} \mathrm{tw}-2(\mathrm{GPDs})+O\left(1 / \mathcal{Q}^{3}\right), \quad c_{0}^{\mathcal{I}} \propto \frac{\Delta^{2}}{\mathcal{Q}^{2}} \mathrm{tw}-2(\mathrm{GPDs})+O\left(1 / \mathcal{Q}^{4}\right) \\
& \left\{\begin{array}{l}
c_{2} \\
s_{2}
\end{array}\right\}^{\mathcal{I}} \propto \frac{\Delta^{2}}{\mathcal{Q}^{2}} \mathrm{tw}-3(\mathrm{GPDs})+O\left(1 / \mathcal{Q}^{4}\right), \quad\left\{\begin{array}{l}
c_{3} \\
s_{3}
\end{array}\right\}^{\mathcal{I}} \propto \frac{\Delta \alpha_{s}}{\mathcal{Q}}(\mathrm{tw}-2)^{\mathrm{T}}+O\left(1 / \mathcal{Q}^{3}\right) \\
& c_{0}^{\mathrm{CS}} \propto(\mathrm{tw}-2)^{2}, \quad\left\{\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right\} \propto \frac{\Delta}{Q}(\mathrm{tw}-2)(\mathrm{tw}-3), \quad\left\{\begin{array}{l}
c_{2} \\
s_{2}
\end{array}\right\} \propto \alpha_{s}^{\mathrm{CS}}(\mathrm{tw}-2)(\mathrm{tw}-2)^{\mathrm{GT}}
\end{aligned}
$$

setting up the perturbative framework:
[Belitsky, DM (97);
Mankiewicz et. al (97);
\checkmark twist-two coefficient functions at next-to-leading order Ji,Osborne (98)]
\checkmark evolution kernels at next-to-leading order [Belitsky, DM, Freund (01)]
\checkmark next-to-next-to-leading order in a specific conformal subtraction scheme Schaefer 06]
\checkmark twist-three including quark-gluon-quark correlation at LO [Anikin,Teryaev, Pire (00);
Belitsky DM (00); Kivel et. al]
\checkmark partial twist-three sector at next-to-leading order [Kivel, Mankiewicz (03)]
\checkmark 'target mass corrections' (not well understood) [Belitsky DM (01)]

Overview: GPD representations

"light-ray spectral functions" diagrammatic α-representation
DM, Robaschik, Geyer,
Dittes, Hoŕejśi (88 (92) 94)
called double distributions
A. Radyushkin (96)

light cone wave function overlap

Diehl, Feldmann, Jakob, Kroll $(98,00)$
(Hamiltonian approach in light-cone quantization)
Diehl, Brodsky, Hwang (00)

Radyushkin (97);
Belitsky, Geyer, DM, Schäfer (97); DM, Schäfer (05);

Shuvaev (99,02); Noritzsch (00) Polyakov $(02,07)$

SL($2, R$) (conformal) expansion (series of local operators)
one version is called Shuvaev transformation, used in `dual' (t-channel) GPD parameterization

A partonic duality interpretation

 quark GPD (anti-quark $x \rightarrow-x$):$F=\theta(-\eta \leq x \leq 1) \omega\left(x, \eta, \Delta^{2}\right)+\theta(\eta \leq x \leq 1) \omega\left(x,-\eta, \Delta^{2}\right)$
$\omega\left(x, \eta, \Delta^{2}\right)=\frac{1}{\eta} \int_{0}^{\frac{x+\eta}{1+\eta}} d y x^{p} f\left(y,(x-y) / \eta, \Delta^{2}\right)$
dual interpretation on partonic level:

central region $-\eta<x<\eta$ mesonic exchange in t-channel
support extension
is unique [DM et al. 92]

[DM, A. Schäfer (05)
KMP-K (07)]

outer region $\eta<x$
partonic exchange in s-chànnel

(partonic) `quantum’ numbers in GPD representations

name	's-channel' variable	' t-channel' variable
GPD	PMF x	PMF ratio η
DD	PMF y	PMF z
CPWE	conformal spin $j+2$	PMF ratio η
'forward-like' CPWE	forward-like PMF z	PMF ratio η
Mellin-Barnes CPWE	conformal spin $j+2$	PMF ratio η
'dual' CPWE	forward-like PMF z	$\rho=j+2-J$
'dual' Mellin-Barnes CPWE	conformal spin $j+2$	t-channel AM J
SO(3)-PWE	PMF x	t-channel AM J

?

about representation

 is not so essential
should be replaced by

How a GPD looks like on its cross-over trajectory?

SL(2,R) representations for GPDs

- support is a consequence of Poincaré invariance (polynomiality)

$$
H_{j}\left(\eta, t, \mu^{2}\right)=\int_{-1}^{1} d x c_{j}(x, \eta) H\left(x, \eta, t, \mu^{2}\right), \quad c_{j}(x, \eta)=\eta^{j} C_{j}^{3 / 2}(x / \eta)
$$

- conformal moments evolve autonomous (to LO and beyond in a special scheme)

$$
\mu \frac{d}{d \mu} H_{j}\left(\eta, t, \mu^{2}\right)=-\frac{\alpha_{s}(\mu)}{2 \pi} \gamma_{j}^{(0)} H_{j}\left(\eta, t, \mu^{2}\right)
$$

- inverse relation is given as series of mathematical distributions:

$$
H(x, \eta, t)=\sum_{j=0}^{\infty}(-1)^{j} p_{j}(x, \eta) H_{j}(\eta, t), p_{j}(x, \eta) \propto \theta(|x| \leq \eta) \frac{\eta^{2}-x^{2}}{\eta^{j+3}} C_{j}^{3 / 2}(-x / \eta)
$$

- various ways of resummation were proposed:
- smearing method [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)] ${ }^{\bullet}$ mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)] dual parameterization (a mixture of both) [M. Polyakov, A. Shuvaev (02)] based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)] Mellin-Barnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]

GPD ansatz at small x from t-channel view

* at short distance a quark/anti-quark state is produced, labeled by conformal spin j+2
* they form an intermediate mesonic state with total angular momentum J strength of coupling is $f_{j}^{J}, J \leq j+1$
mesons propagate with $\frac{1}{m^{2}(J)-t} \propto \frac{1}{J-\alpha(t)}$
* decaying into a nucleon anti-nucleon pair with given angular momentum J , described by an impact form factor

$$
F_{j}^{J}(t)=\frac{f_{j}^{J}}{J-\alpha(t)} \frac{\bigcup_{1}}{\left(1-\frac{t}{M^{2}(J)}\right)^{p}}
$$

! GPD E is zero if chiral symmetry holds (partial waves are Gegenbauer polynomials with index $3 / 2$)
D-term arises from the $\mathrm{SO}(3)$ partial wave $J=j+1(j \rightarrow-1)$

Can the skewness function be constrained from lattice?

- relation among measurable and GPD Mellin moments at $\eta=0$:

$$
\int_{0}^{1} d \xi \xi^{j} \Im \mathrm{~m} \mathcal{F}\left(\xi, t, \mathcal{Q}^{2}\right) \stackrel{\mathrm{LO}}{=} \pi f_{j}\left(t, \mathcal{Q}^{2}\right)\left[1+\delta_{j}\left(t, \mathcal{Q}^{2}\right)\right]
$$

- deviation factors: $\delta_{j}\left(t, \mu^{2}\right)=\frac{\int_{0}^{1} d x x^{j} S\left(x, t, \mu^{2}\right) F\left(x, \eta=0, t, \mu^{2}\right)}{\int_{0}^{1} d x x^{j} F\left(x, \eta=0, t, \mu^{2}\right)}$
are given by a series of operator expectation values with increasing spin $j+n+1$

$$
\delta_{j}\left(t, \mu^{2}\right)=\sum_{\substack{n=2 \\ \text { even }}}^{\infty} \frac{f_{j+n}^{(n)}\left(t, \mu^{2}\right)}{f_{j}\left(t, \mu^{2}\right)}, \quad f_{j}^{(n)}\left(t, \mu^{2}\right)=\left.\frac{1}{n!} \frac{d^{n}}{d \eta^{n}} f_{j}\left(\eta, t, \mu^{2}\right)\right|_{\eta=0}
$$

- lattice can evaluate $j=0,1,2,(3)$, i.e., $n=2: \quad \delta_{0}\left(t, \mu^{2}=4 \mathrm{GeV}^{2}\right) \approx 0.2+$? thanks to Ph. Hägler
- ? wrong expectation from evolution:

$$
\begin{aligned}
\delta_{j} & \sim \frac{2^{j+1} \Gamma(5 / 2+j)}{\Gamma(3 / 2) \Gamma(3+j)}-1 \\
\delta_{0} & \sim 0.5 \quad \delta_{1} \sim 1.5
\end{aligned}
$$

Strategies to analyze DVCS data

GPD model approach:

BKM model [Belitsky, Kirchner, DM (01) based on RDDA] `aligned jet' model [Freund, McDermott, Strikman (02)] Kroll/Goloskokov (05) based on RDDA [not utilized for DVCS] ‘dual' model [Polyakov,Shuvaev 02;Guzey,Teckentrup 06;Polyakov 07] " -- " [KMP-K (07) in MBs-representation] Bernstein polynomials [Liuti et. al (07)] dynamical models: not applied [Radyuskin et.al (02); Tiburzi et.al (04); Hwang DM (07)]... flexible models: any representation by including unconstrained degrees of freedom (for fits)

What is the physical content of "invisible’ (unconstrained) degrees of freedom?

Extracting CFFs from data: real and imaginary part

0 . analytic formulae [BMK 01]
i. (almost) without modeling [Guidal, Moutarde (08-10)]
ii. dispersion integral fits [KMP-K (08),KM (08/09)]
iii. flexible GPD modeling [KM (08/09)]

