# **Exclusive processes and nucleon structure** in the transition region

C. Weiss (JLab), GPDs@COMPASS Workshop, CERN, 04-Mar-2010



Physics of transition region

Nucleon structure landscape Exclusive processes at 0.01 < x < 0.1

Transverse distribution of partons

Gluons from  $J/\psi$ ,  $\phi$ Quarks vs. gluons from  $\gamma \leftrightarrow J/\psi$ Chiral component from small t, pion knockout processes

- Non-singlet channels at x < 0.1 Nucleon/meson structure from  $\rho^+, \pi, K$
- ullet GPDs from  $ep/\mu p$  for pp@LHC Transverse nucleon structure in pp Saturation at small x

#### **Nucleon structure: Landscape**



#### Physical properties

Parton densities

Transverse spatial distributions ←

Orbital motion, angular momentum

Correlations: transverse, longitudinal

#### Nucleon in parton picture: Many-body system!

Different components of wave function, effective dynamics

#### Dynamical regions

Valence region x>0.2Valence quarks, gluons Effective few-body description 3q, 5qLattice  $\rightarrow$  PDF/GPD Moments

Transition region  $\sim 0.01 < x < 0.2$  Non-perturbative sea, gluons Vacuum structure, chiral dynamics

Small–x region x < 0.01 Gluons, singlet sea  $q + \bar{q}$  QCD radiation, diffusion, saturation

### **Exclusive processes: Transition region**

|                   | x < 0.01                                                                                                                                          | x > 0.2                                                                                             |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Cross<br>sections | Gluon/singlet quarks $J/\psi,\phi, ho^0,\gamma$ vs. non-singlet quarks $ ho^+,\pi,K$                                                              | valence quark dominance $\rho^+ \approx \rho^0, \phi \ll \rho^0$                                    |
| Skewness          | Theoretically controlled: QCD evolution, $t$ -channel GPD parametrizations $R = \text{DVCS/DIS}$ $t \approx -\Delta_{\perp}^2$ transverse imaging | Essentially non-perturbative: Longitudinal correlations $t_{ m min}$ large, $t=f(\xi,\Delta_\perp)$ |
| Higher<br>twist   | Space–time picture: Dipole model HT $\sim$ finite size of $qar{q}$ Successful phenomenology                                                       | Challenging!<br>Sudakov suppression                                                                 |

 $\longrightarrow$  Transition region  $\longleftarrow$ 

DVCS not special, look at full set of singlet channels, incl.  $J/\psi, \phi, \rho^0, \gamma!$  Test reaction mechanism: Universality,  $Q^2$ -scaling of t-slopes, . . .

#### Transverse distribution: Gluons





SW, HERA-LHC Proceedings, arXiv:0812.1053.  $Q^2 \approx 3\,\mathrm{GeV}^2$ 

 Transverse spatial distribution from  $\gamma^{(*)} + N \rightarrow J/\psi + N$ 

Reaction mechanism, QCD-based description tested at HERA

Transverse distribution from relative  $\Delta_T$  dependence

Interesting observations

Gluonic transverse radius at x>0.1 smaller than transverse charge radius  $\langle b^2 \rangle_g < \langle b^2 \rangle_{\rm charge}$ 

Increase between  $x \sim 0.1$  and 0.01  $\leftrightarrow$  Chiral dynamics?

Regge-like growth below x < 0.01 with slope  $\alpha_g' < \alpha_P' = 0.25 \, \mathrm{GeV}^{-2}$ 

Transition region largely unexplored!

# COMPASS: Gluons with $J/\psi, \phi$



Preliminary rate estimate – should be checked!

 $\bullet$  COMPASS: Gluon imaging through exclusive  $J/\psi$ 

x > 0.01: Map unexplored region of non-perturbative gluons!

Aim for

Full t-distribution  $\rightarrow$  Fourier Non-exponential? Power-like at  $|t| > 1 \, \mathrm{GeV}^2$ ?

Leptoproduction, not just photoproduction: Test reaction mechanism through  $Q^2$  dependence

• Alt: Exclusive  $\phi$  production

HERA data show dominance of small–size configurations for  $Q^2>10\,{\rm GeV}^2$ 

Test universality through different channels

### Gluon vs. singlet quark distribution





EIC simulation Sandacz, Hyde, CW – adapt to COMPASS!

 Do singlet quarks and gluons have the same transverse distribution?

> Hints from HERA: Area $(q + \bar{q}) > \text{Area}(g)$

Dynamical models predict difference: Pion cloud, constituent quark picture

No difference assumed in present pp MC generators for LHC!

• Gluon size from  $J/\psi$ , singlet quark size from DVCS

x-dependence: Quark vs. gluon diffusion in wave function

Detailed analysis: LO  $\rightarrow$  NLO Müller et al.

Detailed differential images of nucleon's partonic structure

#### Transverse distribution: Chiral component





• Large–distance component of PDF at  $b \sim 1/M_\pi$  and  $x < M_\pi/M_N$  from chiral dynamics: "Pion cloud"

Model-independent, cf. Yukawa tail Strikman, CW 03/09

Strong in isoscalar quarks/gluon, suppressed in isovector  $\bar{d} - \bar{u}$ 

• Increase of  $\langle b^2 \rangle$  in transition region

Suggests 
$$\langle b^2 \rangle_{q+\bar{q}} > \langle b^2 \rangle_g$$
, cf. DVCS  $> J/\psi$  slope at HERA!





Strikman, CW PRD80:114029,2009

#### Transverse distribution: Chiral component





#### Can we test it experimentally?

t--dependence of exclusive  $J/\psi,\phi,\gamma$  : Chiral component at  $t<4M_\pi^2\sim 0.1\,{\rm GeV}^2$ 

Deviation from exponential behavior – very challenging!

#### Theoretical issues

Small–t region can have dramatic effect on average transverse size  $\langle b^2 \rangle$ 

Need model of non-chiral core!
Gluons packaged in "constituent quarks"

→ QCD vacuum structure

#### Chiral component: Pion knockout processes





suppressed!

 Hard exclusive process on pion emitted by nucleon Strikman, CW 03

$$k_\pi^2 \sim M_\pi^2$$
 quasi-real Requires  $x \ll M_\pi/M_N \sim 0.1$ 

• Kinematics with  $p_T(\pi) \gg p_T(N)$  suppresses production on nucleon

$$F_{\pi NN}(t)$$
 softer than  $\mathrm{GPD}_{\pi}(t)$ 

ullet Probe gluon GPD in pion at  $|t_\pi| \sim 1\,{
m GeV}^2$ 

Fundamental interest

Moments calculable in Lattice QCD

• Experimental requirements: Detection of forward nucleon and moderate— $p_T$  pion

Direct probe of chiral component of partonic structure!

# Meson production: Non-singlet channels





• Non-singlet channels practically unexplored at x < 0.1

Cross sections drop with x, small

Reaction mechanism: Transition to small–size regime?

Energy dependence should change with  $Q^2$ :

Soft:  $\alpha_R' \approx 0.9 \, \text{GeV}^{-2}$ 

Hard:  $\alpha'(Q^2)$  expected much smaller Where/how does transition occur?

Progress with higher twist in hard amplitudes → Kroll

 Could provide valuable information on transverse structure of non-perturbative sea, incl. polarization

Meson quantum numbers select spin/flavor component of GPD

Information about meson wave function: Size, flavor structure

Even limited data would be very interesting!

# Transverse structure in pp@LHC





 $\bullet$  Transverse gluon distribution essential ingredient in studies of unitarity limit/saturation at small x

Kowalski, Teaney; Frankfurt, Strikman + collab; . . .

Initial conditions for non-linear QCD evolution

 $Q_{
m sat} \sim {
m gluons/transverse}$  area

ullet Phenomenology of high-energy pp collisions with hard processes

Probability for multiple hard processes governed by transverse distribution of partons

- → MC generators, pedestal for new physics
- → Multiparton correlations?

Rapidity gap survival in exclusive diffraction  $pp \to p+H+p$   $x_{1,2}=M_H/\sqrt{s}\sim 10^{-2}~$  Frankfurt, Hyde, Strikman, CW 06

Underlying event structure: Centrality, spectator interactions

Transverse structure at  $x \sim 10^{-2}$  essential input!

# **Summary (tentative)**

- Aim to measure all singlet channels:  $J/\psi, \phi, \rho^0, \gamma$ Test reaction mechanism, separate gluons/singlet quarks
- Transverse distribution of gluons/singlet quarks in transition region

Both small  $|t|<0.1~{\rm GeV^2}$  and large  $|t|>1~{\rm GeV^2}$  interesting Chiral component very difficult to identify in t-dependence

• Non-singlet channels  $\rho^+, K^*, \pi, \eta, K, \ldots$  completely unexplored

Transition soft  $\leftrightarrow$  hard reaction mechanism? Transverse distribution of non-singlet sea (spin/flavor)? t-dependence

ullet Usefulness for pp@LHC important part of motivation

Supplementary material

# Transverse distribution: Change with $Q^2$



 Transverse distribution of partons changes through DGLAP evolution

Transverse size decreases with increasing  $Q^2$  Effective Regge slope  $\alpha_g'$  decreases with  $Q^2$ 





Frankfurt, Strikman, CW, PRD 69, 114010 (2004)