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Electroproduction of mesons

rigorous proof of collinear factorization for Q2 → ∞
(Radyushkin (96); Collins et al (97))

hard subprocesses

γ∗g → V g , γ∗q → V, Pq

and GPDs and meson w.f.

(encode the soft physics)
p p′

γ∗ V

x x′

p p′

γ∗ V

dominant transition γ∗
L → VL, P other transitions power suppressed

PK 2



Transverse photon polarization matters

vector-meson electroproduction

R = σL/σT (HERA W ≃ 80GeV)

γ∗

T → VT transitions substantial

power corr. and/or higher twist needed
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various moments of π+ cross section

measured with trans. pol. target

sin φs moment very large

does not seem to vanish for t′ → 0

Asin φS

UT ∝ Im[M∗

0+,0+M0−,++]

requires n-f. ampl. M0−,++

γ∗

T → P transitions substantial

(HT , transversity)
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Corrections to the l.-t. amplitudes?

vector-meson electroproduction:

predictions for σL exceed data by a large factor

(HERA W = 75GeV ρ )

power corr. and/or higher orders of pQCD?

(Diehl-Kugler 07, Ivanov 07)
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π+ electroproduction:

contribution from pion exchange

requires π elm form factor (measured there)

lead. twist only about a third of exp. value

fails with cross section by order of magnitude

additional contributions required

γ∗ π+

p n

assump. of dominance of l.-t. contr. to LL ampl. at low Q2 has no justification

(large power corr. not implausible: see π0γ form factor

BaBar data up to ≃ 40GeV2 cannot be understood without them)
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The γ∗p → V B amplitudes
need to go beyond coll. factorization =⇒ k⊥ factorization (mod. pert. appr.)

(based on work by Ellis-Furmanski-Petronzio, Collins-Soper, Sterman et al)

consider large Q2, W and small t;

kinematics fixes skewness: ξ ≃ xBj

2−xBj
[1 + m2

V /Q2] ≃ xBj/2 + m.m.c.

Mµ+,µ+(V ) =
e0

2

{
∑

a

eaCaa
V 〈Hg

eff〉V µ +
∑

ab

Cab
V 〈Hab

eff〉V µ

}
,

Mµ−,µ+(V ) = −e0

2

√
−t

M + m

{
∑

a

eaCaa
V 〈Eg〉V µ +

∑

ab

Cab
V 〈Eab〉V µ

}
,

Cab
V flavor factors, M(m) mass of B(p), Heff = H − ξ2/(1 − ξ2)E

contributions from H̃ to T-T amplitude not shown

electroproduction with unpolarized protons at small ξ:

E not much larger than H (see below) =⇒ Heff → H for small ξ

|Mµ−,µ+|2 ∝ t/m2 neglected =⇒ probes H (exception ρ+)

trans. polarized target: probes Im[〈E〉∗〈H〉] interference

polarized beam and target: probes Re[〈H〉∗〈H̃〉] interference
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Subprocess amplitudes

F = H, E λ parton helicities

〈F 〉ab(g)
V µ =

∑
λ

∫
dx̄HV ab(g)

µλ,µλ (x̄, ξ,Q2, t = 0)F ab(g)(x̄, ξ, t)

F aa = F a , F ab = F a − F b (a 6= b) (with flavor symmetry)

γ∗ V· · ·

LO pQCD

+ quark trans. mom.

+ Sudakov supp.

⇒ lead. twist for Q2 → ∞

HV ab
µλ,µλ =

∫
dτd2b Ψ̂V µ(τ,−~b) exp[−S(τ,~b, Q2)]

× F̂ab
µλ,µλ(x̄, ξ, τ, Q2,~b)

Sudakov factor (Sterman et al)

S ∝ ln
ln (τQ/

√
2ΛQCD)

− ln (bΛQCD) + NLL

F̂ FT of hard scattering kernel

e.g. FT of ∝ ea/[k2
⊥ + τ(x̄ + ξ)Q2/(2ξ)]

regularizes also TT amplitude

in collinear appr:

TT:
∫ 1

0
dτ ΦV (τ)

τ2 ∝
∫ 1

0
dτ
τ IR singular
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Double distributions

integral representation (i= valence, sea quarks, gluons)

Hi(x̄, ξ, t) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|
dα δ(β + ξα − x̄) fi(β, α, t) + Di Θ(ξ2 − x̄2)

fi double distributions Mueller et al (94), Radyushkin (99)

advantage - polynomiality automatically satisfied

Di(x̄, t) (i =gluon, sea) additional free function, support −ξ < x̄ < ξ

parameterization of fi in terms of forward limits and Regge-like t dependence

(forw. limit of H: PDFs - reduction formula respected)

fi(β, α, t) = hi(β) exp[(bi + α′

i ln(1/β))t]
Γ(2ni + 2)

22ni+1Γ2(ni + 1)

[(1 − |β|)2 − α2]ni

(1 − |β|)2ni+1

h(β) = q(β), βg(β) (properly continued to −1 < β < 0)

ng = nsea = 2 , α′
g = α′

sea = 0.15 GeV−2 (sea - gluon mixing under evolution)

nval = 1 , α′
v = 0.9 GeV−2

few free parameters (bi)

if forw. limit unknown (e.g. E): hi ∼ βαRi
(0)(1 − β)αi more parameters
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Numerical results for cross sections

H constructed from CTEQ6 PDFs through the double distr. ansatz

(D = 0, sum rules and positivity bounds checked numerically)

Gaussian wave fcts for the mesons ΨV j(τ,k⊥) ∝ exp[−a2
V jk

2
⊥/(τ τ̄)]

(MPA: ’Gegenbauer filter’ - higher Gegenbauer terms strongly suppressed at low Q2)

L an T different, free parameters - aV
L,T (transverse size 〈k2

⊥〉1/2 ∝ 1/aV
L,T )

meson wf. provides effects of order 〈k2
⊥〉/Q2 separation of both

GPDs mainly influence the ξ(xBj) dependence effects possible

fit to all data from HERMES, COMPASS, E665, H1, ZEUS

cover large range of kinematics Q2 ≃ 3 − 100 GeV2 W ≃ 5 − 180 GeV

main features of H fairly well fixed
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Results on cross sections
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Q2 = 3.8 GeV2,

glue+sea, glue, valence +interf.

gluons (+ sea) dominant

for COMPASS kinematics

data: H1 (open), ZEUS (filled squares), E665 (triangles), HERMES (circles)
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COMPASS data on ρ and φ may verify dominance of gluons (+ sea)
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What do we know about Ev?

analysis of Pauli FF for proton and neutron at ξ = 0 Diehl et al (04):

F
p(n)
2 = eu(d)

∫ 1

0

dxEu
v (x, ξ = 0, t) + ed(u)

∫ 1

0

dxEd
v (x, ξ = 0, t)

ansatz for small −t: Ea
v = ea

v(x) exp
{
t
(
α′

v ln(1/x) + be
a

)}

forward limit: ea
v = Nax−αv(0)(1 − x)βa

v (analogously to PDFs)

Na fixed from κa =
∫ 1

0
dxEa

v (x, ξ = 0, t = 0)

fitting FF data provides: βu
v = 4, βd

v = 5.6

(other powers not excluded in 04 analysis)

new JLab data on Gn
E,M

up to 3.5(5.0) GeV2 favor βu
v < βd

v

Input to double distribution ansatz
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E for gluons and sea quarks

sum rule (Ji’s s.r. and momentum s.r. of DIS) at t = ξ = 0

∫ 1

0

dxxeg(x) = eg
20 = −

∑
eav

20 − 2
∑

eā
20

valence term very small, in particular if βu
v ≤ βd

v

⇒ gluon and sea quark moments cancel each other almost completely

positivity bound forbids large sea ⇒ gluon small too

parameterization (flavor symm. sea for E assumed)

ei = Nix
−αg(0)(1 − x)βi

and Regge-like t dependence:

∝ exp
{
t
(
α′

i ln(1/x) + be
i

)}

input to double distribution ansatz for E
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Variants of E and Ji’s sum rule

〈Ja〉 =
1

2

[
qa
20 + ea

20

]
〈Jg〉 =

1

2

[
g20 + eg

20

]

(ξ = 0) 〈J〉 means average value of three component of J

var. β u
val β d

val βg βs Ng Ns Ju Jd Js Jg

1 4 5.6 - - 0.000 0.000 0.250 0.020 0.015 0.214

2 4 5.6 6 7 -0.873 0.155 0.276 0.046 0.041 0.132

3 4 5.6 6 7 0.776 -0.155 0.225 -0.005 -0.011 0.286

4 10 5 7 - 0.523 0.000 0.209 0.013 0.015 0.257

J i quoted at scale 4GeV2 (spread indicates uncertainties of present knowledge)∑
J i = 1/2, the spin of the proton

characteristic, stable pattern: for all variants Ju and Jg are large, others small
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Results for AUT (V )
data: HERMES (08) COMPASS prel.
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Results continued
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variant 1 for ω, ρ+, K∗0

t dependence controlled by trivial factor
√
−t′

except for ρ+: since Hu
v − Hd

v small and Eu
v − Ed

v large

E non-negligible in cross section, contribution from helicity flip ampl. ∝ t′

more data on ρ0, ω, φ from HERMES and COMPASS will come

will likely improve knowledge of E for valence quarks
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What did (can) we learn about GPDs from DME?
What is probed by experiment:

imaginary parts ∝ GPDs at ξ ≃ x + O(< k2
⊥ > /Q2)

real parts - convolutions, dominated by x near ξ (see also disp. rel.)

ξ ≃ 10−3 HERA

≃ 10−2 COMPASS

≃ 10−1 HERMES x ≥ 0.6 not probed

≃ 0.1 − 0.4 JLab large x region important

As compared to DVCS:

disadvantage: need for GPDs and meson wave functions

advantages: allows for flavor separation (mesons select their valence quarks

J/Ψ: gluon from the proton to lead. twist accuracy)

φ: gluon +sea

ρ0, ω: gluon+sea+valence

ρ+, π+: valence π+: H̃, Ẽ
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Valence quark GPDs
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Summary

• MPA accounts for most features of DME including power corrections

for W >∼ 4 GeV Q2 >∼ 3 GeV2 and small t

unsettled: rel. phase between LL and TT too small, see Re r5
10

not yet calculated for vector mesons: T → L ampl., e.g. seen in r5
00

(twist-3 as for π+, M0−++, HT )

• DD ansatz for GPDs (parameterized by forward limits, Regge-like t dep.

and meson DAs as weight fcts) seems to be flexible enough;

analytic properties may be a useful additional constraint (Müller)

detailed comparison of different sets of GPDs is needed

• DVCS: not analysed by us (lack of man power)

we want to ’finish’ meson production first

from our GPDs we can work out DVCS to NLO for

COMPASS kinematics in princple
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ρ0 and φ cross sections
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at Q2 = 4(3.8) GeV2 E665 ( ), HERMES (•), CORNELL ( )

ZEUS ( ), H1 ( ), CLAS (◦)
Goloskokov-K (09)

ω, ρ+ very large at small W too

double distribution model too simple for valence quarks for large ξ?

breakdown of handbag physics? Lacking nucleon resonances? (Mueller)

implications for DVCS?
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Cross sections for ω, ρ+ and K∗0
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results for HERMES and COMPASS (W = 5, 10 GeV ) ρ0, ω, ρ+, K∗0

W dependence controlled by Regge behaviour σ ∝ W 4(α(0)−1) at fixed Q2

ρ0 , ω : α − 1 = δ ≃ 0.1 diffractive (gluon + sea)

ρ+ : α − 1 ≃ −0.5 K∗0 intermediate

valence quark contributions die out quickly with increasing W at small ξ
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