Phenomenological Experience with hard Meson Electroproduction

P. Kroll

Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg CERN, March 2010

Outline:

- Introduction
- Handbag factorization for meson electroproduction
- Transversely polarized photons matter
- Vector mesons
- Results for vector mesons
- Summary

based on work done in collaboration with S. Goloskokov hep-ph/0501242, 0611290, arXiv:0708.3569, 0809.4126, 0906.0460

Electroproduction of mesons

rigorous proof of collinear factorization for $Q^2 \rightarrow \infty$ (Radyushkin (96); Collins et al (97))

hard subprocesses

 $\gamma^*g \to Vg \,, \ \gamma^*q \to V, Pq$

and GPDs and meson w.f. (encode the soft physics)

dominant transition $\gamma_L^* \to V_L, P$

other transitions power suppressed

Transverse photon polarization matters

vector-meson electroproduction $R = \sigma_L / \sigma_T$ (HERA $W \simeq 80 \,\text{GeV}$) $\gamma_T^* \rightarrow V_T$ transitions substantial power corr. and/or higher twist needed

various moments of π^+ cross section measured with trans. pol. target $\sin \phi_s$ moment very large does not seem to vanish for $t' \to 0$ $A_{UT}^{\sin \phi_S} \propto \text{Im}[M_{0+,0+}^* M_{0-,++}]$ requires n-f. ampl. $\mathcal{M}_{0-,++}$ $\gamma_T^* \to P$ transitions substantial $(H_T, \text{ transversity})$

HERMES (09) $Q^2 \simeq 2.5 \,\mathrm{GeV}^2$, $W = 3.99 \,\mathrm{GeV}$

Corrections to the l.-t. amplitudes?

vector-meson electroproduction:

predictions for σ_L exceed data by a large factor (HERA $W = 75 \text{GeV} \rho$) power corr. and/or higher orders of pQCD? (Diehl-Kugler 07, Ivanov 07)

π^+ electroproduction:

contribution from pion exchange requires π elm form factor (measured there) lead. twist only about a third of exp. value fails with cross section by order of magnitude additional contributions required

assump. of dominance of I.-t. contr. to LL ampl. at low Q^2 has no justification (large power corr. not implausible: see $\pi^0 \gamma$ form factor BaBar data up to $\simeq 40 \,\text{GeV}^2$ cannot be understood without them)

The $\gamma^* p \to VB$ amplitudes

need to go beyond coll. factorization $\implies k_{\perp}$ factorization (mod. pert. appr.) (based on work by Ellis-Furmanski-Petronzio, Collins-Soper, Sterman et al) consider large Q^2 , W and small t;

kinematics fixes skewness: $\xi \simeq \frac{x_{\rm Bj}}{2-x_{\rm Bj}} [1 + m_V^2/Q^2] \simeq x_{\rm Bj}/2 + {\rm m.m.c.}$

$$\mathcal{M}_{\mu+,\mu+}(V) = \frac{e_0}{2} \left\{ \sum_a e_a \mathcal{C}_V^{aa} \langle H_{\text{eff}}^g \rangle_{V\mu} + \sum_{ab} \mathcal{C}_V^{ab} \langle H_{\text{eff}}^{ab} \rangle_{V\mu} \right\},$$
$$\mathcal{M}_{\mu-,\mu+}(V) = -\frac{e_0}{2} \frac{\sqrt{-t}}{M+m} \left\{ \sum_a e_a \mathcal{C}_V^{aa} \langle E^g \rangle_{V\mu} + \sum_{ab} \mathcal{C}_V^{ab} \langle E^{ab} \rangle_{V\mu} \right\},$$

 $\begin{array}{ll} \mathcal{C}_V^{ab} \mbox{ flavor factors, } M(m) \mbox{ mass of } B(p), & H_{\rm eff} = H - \xi^2/(1 - \xi^2)E \\ \mbox{ contributions from } \widetilde{H} \mbox{ to T-T amplitude not shown} \\ \mbox{ electroproduction with unpolarized protons at small } \xi: \\ E \mbox{ not much larger than } H \mbox{ (see below)} \Longrightarrow H_{\rm eff} \to H \mbox{ for small } \xi \\ |M_{\mu-,\mu+}|^2 \propto t/m^2 \mbox{ neglected } \Longrightarrow \mbox{ probes } H \mbox{ (exception } \rho^+) \\ \mbox{ trans. polarized target: } probes \mbox{ Im}[\langle E \rangle^* \langle H \rangle] \mbox{ interference } \\ \mbox{ polarized beam and target: } probes \mbox{ Re}[\langle H \rangle^* \langle \widetilde{H} \rangle] \mbox{ interference } \end{array}$

Subprocess amplitudes

$$\begin{split} F &= H, E \quad \lambda \text{ parton helicities} \\ \langle F \rangle_{V\mu}^{ab(g)} &= \sum_{\lambda} \int d\bar{x} \mathcal{H}_{\mu\lambda,\mu\lambda}^{Vab(g)}(\bar{x},\xi,Q^2,t=0) \ F^{ab(g)}(\bar{x},\xi,t) \\ F^{aa} &= F^a \ , \qquad F^{ab} = F^a - F^b \quad (a \neq b) \text{ (with flavor symmetry)} \end{split}$$

 $\mathcal{H}^{Vab}_{\mu\lambda,\mu\lambda} = \int d\tau d^2 b \,\hat{\Psi}_{V\mu}(\tau,-\vec{b}) \exp[-S(\tau,\vec{b},Q^2)]$ $\times \quad \hat{\mathcal{F}}^{ab}_{\mu\lambda,\mu\lambda}(\bar{x},\xi,\tau,Q^2,\vec{b})$

LO pQCD

+ quark trans. mom.

+ Sudakov supp.

$$\Rightarrow$$
 lead. twist for $Q^2
ightarrow \infty$

in collinear appr:

TT: $\int_0^1 d\tau \frac{\Phi_V(\tau)}{\tau^2} \propto \int_0^1 \frac{d\tau}{\tau}$

Sudakov factor (Sterman et al) $S \propto \ln \frac{\ln (\tau Q/\sqrt{2}\Lambda_{\rm QCD})}{-\ln (b\Lambda_{\rm QCD})} + \text{NLL}$ $\hat{\mathcal{F}}$ FT of hard scattering kernel e.g. FT of $\propto e_a/[k_{\perp}^2 + \tau(\bar{x} + \xi)Q^2/(2\xi)]$ regularizes also TT amplitude

IR singular

Double distributions

integral representation (i= valence, sea quarks, gluons)

$$H_{i}(\bar{x},\xi,t) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \,\delta(\beta + \xi\alpha - \bar{x}) \,f_{i}(\beta,\alpha,t) + D_{i} \,\Theta(\xi^{2} - \bar{x}^{2})$$

 f_i double distributions Mueller *et al* (94), Radyushkin (99) advantage - polynomiality automatically satisfied $D_i(\bar{x},t)$ (i =gluon, sea) additional free function, support $-\xi < \bar{x} < \xi$ parameterization of f_i in terms of forward limits and Regge-like t dependence (forw. limit of H: PDFs - reduction formula respected)

$$f_i(\beta, \alpha, t) = h_i(\beta) \exp[(b_i + \alpha'_i \ln(1/\beta))t] \frac{\Gamma(2n_i + 2)}{2^{2n_i + 1}\Gamma^2(n_i + 1)} \frac{[(1 - |\beta|)^2 - \alpha^2]^{n_i}}{(1 - |\beta|)^{2n_i + 1}}$$

$$\begin{split} h(\beta) &= q(\beta), \beta g(\beta) \quad (\text{properly continued to } -1 < \beta < 0) \\ n_g &= n_{\text{sea}} = 2, \quad \alpha'_g = \alpha'_{\text{sea}} = 0.15 \,\text{GeV}^{-2} \text{ (sea - gluon mixing under evolution)} \\ n_{\text{val}} &= 1, \qquad \alpha'_v = 0.9 \,\text{GeV}^{-2} \\ \text{few free parameters } (b_i) \\ \text{if forw. limit unknown (e.g. E): } h_i \sim \beta^{\alpha_{R_i}(0)} (1 - \beta)^{\alpha_i} \quad \text{more parameters} \end{split}$$

Numerical results for cross sections

H constructed from CTEQ6 PDFs through the double distr. ansatz (D = 0, sum rules and positivity bounds checked numerically)

Gaussian wave fcts for the mesons $\Psi_{Vj}(\tau, \mathbf{k}_{\perp}) \propto \exp[-a_{Vj}^2 \mathbf{k}_{\perp}^2/(\tau \bar{\tau})]$ (MPA: 'Gegenbauer filter' - higher Gegenbauer terms strongly suppressed at low Q^2)

L an T different, free parameters - $a_{L,T}^V$ (transverse size $\langle k_{\perp}^2 \rangle^{1/2} \propto 1/a_{L,T}^V$)

meson wf. provides effects of order $\langle k_{\perp}^2 \rangle / Q^2$ separation of both GPDs mainly influence the $\xi(x_{Bj})$ dependence effects possible

fit to all data from HERMES, COMPASS, E665, H1, ZEUS cover large range of kinematics $Q^2 \simeq 3 - 100 \,\mathrm{GeV}^2$ $W \simeq 5 - 180 \,\mathrm{GeV}$ main features of H fairly well fixed

Results on cross sections

 $Q^2 = 3.8 \,\mathrm{GeV}^2,$

glue+sea, glue, valence +interf.

gluons (+ sea) dominant for COMPASS kinematics

data: H1 (open), ZEUS (filled squares), E665 (triangles), HERMES (circles)

COMPASS data on ρ and ϕ may verify dominance of gluons (+ sea)

What do we know about E_v ?

analysis of Pauli FF for proton and neutron at $\xi = 0$ Diehl et al (04):

$$\begin{split} F_2^{p(n)} &= e_{u(d)} \int_0^1 dx E_v^u(x, \xi = 0, t) + e_{d(u)} \int_0^1 dx E_v^d(x, \xi = 0, t) \\ \text{ansatz for small} -t: \ E_v^a &= e_v^a(x) \exp\left\{t\left(\alpha_v' \ln(1/x) + b_a^e\right)\right\} \\ \text{forward limit:} \ e_v^a &= N_a x^{-\alpha_v(0)} (1-x)^{\beta_v^a} \text{ (analogously to PDFs)} \\ N_a \text{ fixed from } \kappa_a &= \int_0^1 dx E_v^a(x, \xi = 0, t = 0) \end{split}$$

fitting FF data provides: $\beta_v^u = 4$, $\beta_v^d = 5.6$ (other powers not excluded in 04 analysis) new JLab data on $G_{E,M}^n$ up to $3.5(5.0) \text{ GeV}^2$ favor $\beta_v^u < \beta_v^d$ Input to double distribution ansatz

E for gluons and sea quarks

sum rule (Ji's s.r. and momentum s.r. of DIS) at $t = \xi = 0$

$$\int_0^1 dx x e_g(x) = e_{20}^g = -\sum e_{20}^{a_v} - 2\sum e_{20}^{\bar{a}}$$

valence term very small, in particular if $\beta_v^u \leq \beta_v^d$

 \Rightarrow gluon and sea quark moments cancel each other almost completely

positivity bound forbids large sea \Rightarrow gluon small too

parameterization (flavor symm. sea for E assumed)

$$e^{i} = N_{i}x^{-\alpha_{g}(0)}(1-x)^{\beta^{i}}$$

and Regge-like t dependence:

$$\propto \exp\left\{t\left(\alpha_i'\ln(1/x) + b_i^e\right)\right\}$$

input to double distribution ansatz for ${\cal E}$

Variants of *E* and Ji's sum rule

$$\langle J^a \rangle = \frac{1}{2} \Big[q_{20}^a + e_{20}^a \Big] \qquad \langle J^g \rangle = \frac{1}{2} \Big[g_{20} + e_{20}^g \Big]$$

 $(\xi = 0)$ $\langle J \rangle$ means average value of three component of J

var.	β_{val}^{u}	β_{val}^{d}	β^{g}	eta^s	N_g	N_s	J^u	J^d	J^s	J^g
1	4	5.6	-	-	0.000	0.000	0.250	0.020	0.015	0.214
2	4	5.6	6	7	-0.873	0.155	0.276	0.046	0.041	0.132
3	4	5.6	6	7	0.776	-0.155	0.225	-0.005	-0.011	0.286
4	10	5	7	-	0.523	0.000	0.209	0.013	0.015	0.257

 J^i quoted at scale $4 \,\mathrm{GeV}^2$ (spread indicates uncertainties of present knowledge) $\sum J^i = 1/2$, the spin of the proton characteristic, stable pattern: for all variants J^u and J^g are large, others small

Results for $A_{UT}(V)$

negative value of A_{UT} favored, variant 4 disfavored

 $A_{UT}(\phi) \simeq 0$ in agreement with prel. HERMES data

Results continued

variant 1 for ω , ρ^+ , K^{*0}

t dependence controlled by trivial factor $\sqrt{-t'}$ except for ρ^+ : since $H_v^u - H_v^d$ small and $E_v^u - E_v^d$ large E non-negligible in cross section, contribution from helicity flip ampl. $\propto t'$

more data on ρ^0, ω, ϕ from HERMES and COMPASS will come will likely improve knowledge of E for valence quarks

What did (can) we learn about GPDs from DME? What is probed by experiment: imaginary parts \propto GPDs at $\xi \simeq x + O(\langle k_{\perp}^2 \rangle / Q^2)$ real parts - convolutions, dominated by x near ξ (see also disp. rel.)

$$\begin{split} &\xi\simeq 10^{-3} \text{ HERA} \\ &\simeq 10^{-2} \text{ COMPASS} \\ &\simeq 10^{-1} \text{ HERMES} \\ &\simeq 0.1 - 0.4 \text{ JLab} \end{split} \qquad \begin{array}{l} x \geq 0.6 \text{ not probed} \\ & \text{large x region important} \end{split}$$

As compared to DVCS: disadvantage: need for GPDs and meson wave functions advantages: allows for flavor separation (mesons select their valence quarks J/Ψ : gluon (mesons select their valence quarks from the proton to lead. twist accuracy) ϕ : gluon +sea ρ^0, ω : gluon +sea+valence ρ^+, π^+ : valence π^+ : $\widetilde{H}, \widetilde{E}$

Valence quark GPDs

	Н	E	\widetilde{H}	
u_v	2	$\kappa_u = 1.67$	0.93	
d_v	1	$\kappa_d = -2.03$	-0.34	

lowest moments

fix signs and rel. sizes if GPDs have no nodes and similar t dependence PK 17

Summary

- MPA accounts for most features of DME including power corrections for $W \gtrsim 4 \,\mathrm{GeV}$ $Q^2 \gtrsim 3 \,\mathrm{GeV}^2$ and small tunsettled: rel. phase between LL and TT too small, see $\operatorname{Re} r_{10}^5$ not yet calculated for vector mesons: $T \rightarrow L$ ampl., e.g. seen in r_{00}^5 (twist-3 as for π^+ , \mathcal{M}_{0-++} , H_T)
- DD ansatz for GPDs (parameterized by forward limits, Regge-like t dep. and meson DAs as weight fcts) seems to be flexible enough; analytic properties may be a useful additional constraint (Müller) detailed comparison of different sets of GPDs is needed
- DVCS: not analysed by us (lack of man power) we want to 'finish' meson production first from our GPDs we can work out DVCS to NLO for COMPASS kinematics in princple

ρ^0 and ϕ cross sections

at $Q^2 = 4(3.8) \,\mathrm{GeV}^2$ E665 (\triangle), HERMES (\bullet), CORNELL (\blacktriangle) ZEUS (\Box), H1 (\blacksquare), CLAS (\circ)

Goloskokov-K (09)

 ω , ρ^+ very large at small W too double distribution model too simple for valence quarks for large ξ ? breakdown of handbag physics? Lacking nucleon resonances? (Mueller) implications for DVCS?

Cross sections for ω, ρ^+ and K^{*0}

results for HERMES and COMPASS ($W = 5, 10 \,\text{GeV}$) ρ^0 , ω , ρ^+ , K^{*0} W dependence controlled by Regge behaviour $\sigma \propto W^{4(\alpha(0)-1)}$ at fixed Q^2 ρ^0 , ω : $\alpha - 1 = \delta \simeq 0.1$ diffractive (gluon + sea) ρ^+ : $\alpha - 1 \simeq -0.5$ K^{*0} intermediate valence quark contributions die out quickly with increasing W at small ξ

PK 20

 A_{LL} at W = 5(10) GeV probes $\operatorname{Re}\left[< \widetilde{H} >^* < H > \right]$

data: HERMES (circles), COMPASS (diamond)