An insight into strangeness with $\phi(1020)$ production from small to large collision systems with ALICE at the LHC

Sushanta Tripathy (for the ALICE collaboration) Indian Institute of Technology Indore, India

XXIII DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2018 December 10 - 14, 2018

- > Introduction
- Signal Extraction
- \succ Transverse momentum (p_T) spectra and mean- p_T

Outline

- **φ** vs. other resonances
- Strangeness enhancement
- **>** Effective strangeness of φ
- Conclusion

Introduction

- Resonances are sensitive to evolution dynamics and are important to probe the hadronic phase due to their short lifetimes
- Re-scattering of decay daughters results in signal loss and regeneration of resonance results in signal gain

- Resonances are sensitive to evolution dynamics and are important to probe the hadronic phase due to their short lifetimes
- Re-scattering of decay daughters results in signal loss and regeneration of resonance results in signal gain
- As φ consists of strange valence quarks, it can shed light into strangeness production
- \succ Effective strangeness of ϕ ?

ALICE Detector

Signal Extraction

 \succ

 \succ

>

- φ(1020) is reconstructed via invariant mass technique
- The uncorrelated background is estimated using event-mixing and like-sign technique.
 - In different p_T intervals, raw yields are obtained from the combinatorial background subtracted signal distributions
 - φ(1020) peak is fitted with a Voigtian function and residual background is fitted with 2nd order polynomial

$$\frac{\mathrm{d}N}{\mathrm{d}m_{\mathrm{KK}}} = \frac{A\Gamma}{(2\pi)^{3/2}\sigma} \int_{-\infty}^{\infty} \exp\left[-\frac{(m_{\mathrm{KK}} - m')^2}{2\sigma^2}\right] \frac{1}{(m' - M)^2 + \Gamma^2/4} \mathrm{d}m'$$

A Voigtian function is used due to the fact that the mass resolution and width of φ have similar magnitudes

Transverse momentum (p_T) Spectra

 \succ p_{τ} -spectra measured in fine multiplicity bins at three collision energies in pp **Ratio to INEL>0 increases at low p_T \rightarrow hardens with increasing multiplicity** For $p_T > 4$ GeV/c, spectral shape is independent of multiplicity Similar behavior observed for other light flavored particles

$p_{\rm T}$ -differential yield Ratio and Integrated yields

- *>* High-p_T yields increase as a function of collision energy
 > Bulk production at low-p_T is independent of collision energy
- Event multiplicity drives the particle production, irrespective of collision energy

S. Tripathy@ DAE-BRNS HEP Sysmposium,

10/12/18

Mean Transverse Momentum

- Similar <p_T> for K^{*0}, p and φ in central Pb-Pb collisions → expected from hydrodynamical models (similar mass)
- pp and p-Pb follow same trend as a function of multiplicity while the trend is different for Pb-Pb collisions
- Exceed central Pb-Pb values in high multiplicity pp and p-Pb collisions

Particle Ratios

0.2

ALI-PREL-156893

2

3

- ▷ p/\phi ratio is almost flat at low-p_T for central Pb-Pb and Xe-Xe collisions → expected from hydrodynamical (similar mass) but can be described with latest recombination models.
- p/φ ratio drops at high-p_T and becomes similar to peripheral Pb-Pb and inelastic pp collisions.

 $p_{_{T}}$ (GeV/c)

ϕ vs other Resonances

ALI-PREL-161554

-- EPOS3 (UrQMD OFF)

Short-lived resonances are suppressed in large collision systems with respect to thermal model prediction and with respect to pp and peripheral **Pb-Pb** collisions

EPOS (with UrQMD) seems to describe the resonance suppression qualitatively while without modeling the hadronic phase via UrQMD, does not describe the suppression.

ϕ vs other Resonances

ALICE Preliminary • p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV □ Pb-Pb √s_{NN} = 5.02 TeV 다 Xe-Xe √s_{NN} = 5.44 TeV ● pp √s = 2.76 TeV × p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV ■ Pb-Pb √s_{NN} = 2.76 TeV ★ pp √s = 200 GeV ☆ Au-Au √*s*_{NN} = 200 GeV -- EPOS3 (UrQMD OFF)

Short-lived resonances are suppressed in large collision systems with respect to thermal model prediction and with respect to pp and peripheral **Pb-Pb** collisions

EPOS (with UrQMD) seems to describe the resonance suppression qualitatively while without modeling the hadronic phase via UrQMD, does not describe the suppression.

- *The modelling of hadronic phase via UrQMD doesn't affect* ϕ production.
- ϕ is not suppressed due to its long lifetime compared to the lifetime of fireball.

Small fraction of ϕ decays in the hadronic phase

Strangeness Enhancement

- ALICE for the first time observed the strange particle enhancement in high multiplicity collisions of small system, pp and p-Pb.
- The strangeness enhancement increases with particle strangeness content

Strangeness Enhancement

- ALICE for the first time observed the strange particle enhancement in high multiplicity collisions of small system, pp and p-Pb.
- The strangeness enhancement increases with particle strangeness content
- \blacktriangleright ϕ/π shows the same trend as K/ π .
- Possible stronger increase for Λ/π compared to K/π and φ/π in very low multiplicity pp collisions.
 - What is the effective strangeness of φ?

Effective strangeness of ϕ

φ(S=0) yield in agreement with thermal model expectation in central Pb-Pb collisions

Effective strangeness of ϕ

φ(S=0) yield in agreement with thermal model expectation in central Pb-Pb collisions

- But decreases towards smaller multiplicity in contrast to the expectation from strangeness canonical suppression
- Favors non-equilibrium production ($\gamma_s < 1$) of ϕ or all strange particles.

Effective strangeness of ϕ

ALI-PREL-156810

→ ϕ (S=0)/K(S=1) fairly flat as a function of multiplicity \rightarrow The ϕ has effective strangeness of 1-2 units

 \succ φ(S=0)/K(S=1) fairly flat as a function of multiplicity → The φ has effective strangeness of 1-2 units

> $\Xi(S=2)/\Phi(S=0)$ fairly flat as a function of multiplicity \rightarrow

- The φ has effective strangeness of 1-2 units
- > Hint of different evolution Ξ and ϕ in very low multiplicity pp collisions.
- In contrast to expectation from non-equilibrium production as quantified with strangeness suppression factor.

ϕ (S=0) production in small systems remains to be understood!

Conclusions

- At low p_T, transverse momentum spectra harden with increasing multiplicity
- **For** $p_T > 4$ GeV/c, spectral shape is independent of multiplicity
- Bulk production at low-p_T is independent of collision energy for minimum bias pp collisions
- Event multiplicity drives the particle production, irrespective of collision energy for pp collisions
- Small fraction of φ decays in the hadronic phase and not affected by rescattering and/or regeneration
- > Thermal production of ϕ in Pb-Pb collisions
- > Effective strangeness of ϕ and production in small systems is still a puzzle.

 \succ Effective strangeness of ϕ and production in small systems is still a puzzle.