

φ and K^{*0} production in p-Pb and Pb-Pb collisions with ALICE at LHC

Sandeep Dudi 'on behalf of the ALICE Collaboration' Panjab University, Chandigarh, India

Outline

- Motivation
- ALICE detector
- Results
 - p⊤ spectra
 - Yield (dN/dy)
 - Mean transverse momentum ($\langle p_{\rm T} \rangle$)
 - Particle ratios
 - Nuclear modification factor (R_{pPb} and R_{AA})
- Summary

Motivation

Resonances having short lifetimes (few fm/c) comparable to that of fireball produced in heavy-ion collisions -> sensitive to the evolution dynamics

Properties of hadronic phase (Re-scattering vs. Regeneration)

- - Modification of measured particle yields
- Compare resonances with different lifetimes

In-medium energy loss

- - Suppression of nuclear modification factor (RAA)

Nuclear Modification Factor in p-Pb (RpPb)

- - Disentangle initial and final state effect
- - Understanding the energy loss mechanism and Cronin effect

→ p-Pb is suitable system to fill gap in size of system produced between pp and Pb-Pb, allowing investigation of dominant particle production mechanism

Interaction with in-medium hadronic phase

ALICE : A Large Ion Collider Experiment

Inner Tracking System(ITS): (IηI < 2.0)

Primary vertex

Tracking

TimeProjectionChamber (TPC): (lηl < 0.9)

TrackingPID

Forward detector (V0): V0A (2.8< η < 5.1) & V0C (-3.7< η < -1.7)

Trigger, centrality estimator

Multiplicity/centrality event classes definition
In p-Pb (V0A) and in pp, Pb-Pb (V0M = V0A + V0C)

Signal Extraction

p-Pb 8.16 TeV

φ and K*⁰ signal obtained by using invariant mass technique
 Combinatorial background : Event-mixing and like-sign technique
 Fit: Breit-Wigner (K*⁰) or Voigtian (φ) + polynomial (residual background)

p_T Spectra in p-Pb

♦ Significant evolution of spectral shape with increasing multiplicity for $p_T < 5$ GeV/c
 ♦ The spectral shape is similar across multiplicity for $p_T > 5$ GeV/c

p[⊤] Spectra in Pb-Pb

- Evolution of the spectral shape with increasing multiplicity for $p_T < 5 \text{ GeV}/c$ Similar behaviour of p_T spectra in Pb-Pb collisions with increasing multiplicities are
 - observed as seen in p-Pb collisions

dN/dy vs multiplicity

1500

 $\left< d \textit{N}_{\textrm{ch}} \! / \! d \eta \right>$

1500

 $\langle \mathrm{d} \textit{N}_{\mathrm{ch}} / \mathrm{d} \eta
angle$

2000

pp, p-Pb

- ✤ dN/dy increases with increasing multiplicity ♦ dN/dy increases approximately linearly with multiplicity
- Independent of colliding systems and energies at similar charged particle multiplicity
- Event multiplicity drives the particle production irrespective of collision energy and system

dN/dy vs multiplicity

• $dN_{\phi}/dy/\langle dN_{ch}/d\eta \rangle$ slightly increasing with multiplicity (due to strangeness enhancement) • $dN_{K^{*0}}/dy/\langle dN_{ch}/d\eta \rangle$ slightly decreasing with multiplicity (due to re-scattering)

Mean p_T vs multiplicity : mass ordering

- (p_T) follows different trends for different collision
 systems
- Mass ordering of $\langle p_T \rangle$ in central Pb-Pb

\rightarrow as expected from hydrodynamics

- Mass ordering breaks down for small collision systems including peripheral Pb-Pb collisions
 - $\rightarrow \langle p_T \rangle_{\Phi} > \langle p_T \rangle_p$ though they have similar mass

Phys. Lett. B 728 (2014) Eur. Phys. J. C 76 (2016) 245

Relative Strangeness Production

Hyperon production increases from low to high multiplicity in pp and p-Pb collisions

- The larger the valence strange quark content, the steeper the slope in the double ratio
 - \rightarrow the effect is due to strangeness and not due to baryon number or mass

Special role of ϕ (s \bar{s})

Net strangeness of φ is zero (hidden strangeness), but it behaves like a particle with open strangeness

- * S_{φ} : Effective strangeness of φ
- ♦ Flat or slightly increasing φ(ISI=0)/K(ISI=1) in pp -- suggesting S_φ ≥ 1
- Flat Ξ(ISI=2)/φ(ISI=0) for high multiplicities or slightly increasing in pp, p-Pb vs. multiplicity
 - -- suggesting $S_\varphi\,{\sim}2$ or $S_\varphi\,{<}\,2$

φ behaves like a particle with strangeness between 1 and 2?

Particle ratio: Resonance to long lived particle

- - From p-Pb and Pb-Pb collisions, almost constant behaviour with system size

→ No re-scattering or regeneration

K*0/K : shows clear suppression

- - From p-Pb and peripheral Pb-Pb collisions to most central Pb-Pb collisions
- → Re-scattering dominates over regeneration

 $\tau(\phi) = 46.2 \text{ fm/}c >> \tau(K^{*0}) = 4.2 \text{ fm/}c$

Nuclear Modification Factor: RAA

$$R_{AA}(p_T) = \frac{Yield_{AA}(p_T)}{Yield_{pp}(p_T) \times \langle N_{Coll} \rangle}$$

✦ Low-p_T (< 2.0 GeV/c)</p>

- - K^{*0} production is suppressed more than π , K and ϕ -> Re-scattering

• Intermediate- p_T (2< p_T < 8.0 GeV/c)

- Difference between baryon and mesons, among the mesons (K^{*0}, π , K and ϕ) -> Mass ordering

• Light flavoured hadrons shows similar suppression at high- p_T (> 8.0 GeV/c)

- - Flavour independence

Summary

✤ p_T spectra

- The shape of p_T spectra are different for different multiplicity classes ($p_T < 5.0$ GeV/c), spectra become harder with increasing multiplicity

Yields (dN/dy)

- pp, p-Pb,Pb-Pb: Independent of colliding system, energy and driven by multiplicity

• Mean $p_T(\langle p_T \rangle)$

- In central Pb-Pb : Mass ordering as expected from hydrodynamics
- pp, p-Pb collisions : Mass ordering violated

Particle ratios

- In p-Pb: hint of collective behaviour and strangeness enhancement ?
- ϕ has "effective strangeness" between 1-2 units ?
- $K^{\star 0}$ show suppression whereas no suppression behaviour in φ
- Nuclear modification factor
 - In Pb-Pb: Consistent with light-flavoured hadrons at $p_T > 8.0 \text{ GeV}/c$
 - Suppression in K*0 at lower p_T due to re-scattering

Thank you