

NOvA's Short-baseline Joint Muon-neutrino Disappearance and Tau-neutrino Appearance Search

Rijeesh Keloth

Cochin University of Science and Technology

DAE Symposium 10th December 2018

NOvA Experiment

- Off-axis long-baseline neutrino oscillation experiment
- The detectors are located 0.8° off NuMI beam axis
- Solution As detectors are off-axis, a narrow energy flux peaks at 2 GeV

Located on surface
 810 km from target
 14 kton

CUSAT

Far Detector:

Near Detector:

€0.3 kton

105 m underground

NOvA Detectors

- Functionally identical detectors made of planes of extruded PVC cells
- Alternating horizontal and vertical planes to provide 3D tracking
- Each cell filled with liquid scintillator
- Light collected in wavelength shifting fibers and fed into avalanche photodiode

Near detector:

CUSAT

Fine-grained, low-Z, highly-active tracking calorimeter

- → 20k PVC cells
- → 65% active by mass

Neutrino Interactions In NOvA

τ decay modes

- Tau is the only lepton
 that can decay into
 hadrons
- ~ 65% hadronic
- Semaining leptonic
- Leptonic- either muonic or electronic
- Solution
 This analysis looks
 only for hadronic τ
 decay

5

CUSAT

LSND and MiniBooNE Anomaly

LSND and miniBooNE reported a v_e excess in anti-neutrino mode
 The evidence for the existence of sterile neutrinos?

6

Sterile Neutrinos

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}$$

 \bigcirc v_{α} ($\alpha = e, \mu, \tau, s$) and v_i (i =1,2,3,4) are the flavor and mass eigen states respectively, and $U_{\alpha 4}$ represents the mixing between active and sterile neutrino.

7

Sterile Neutrinos

 $\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \end{pmatrix}$

 \bigcirc v_{α} ($\alpha = e, \mu, \tau, s$) and v_i (i =1,2,3,4) are the flavor and mass eigen states respectively, and $U_{\alpha 4}$ represents the mixing between active and sterile neutrino.

7

3+1 Oscillation Model

The probability for v_τ appearance and v_μ
 disappearance using a 3+1 oscillation
 model in Short- Baseline(SBL)
 approximation:

$$\mathsf{P}_{\substack{(-)\\\nu_{\mu}\to\nu_{\tau}}}^{(-)} = \sin^{2}2\theta_{\mu\tau}\sin^{2}\frac{\Delta m_{41}^{2}L}{4E}$$

where
$$\sin^2 2\theta_{\mu\tau} \equiv 4|U_{\mu4}|^2|U_{\tau4}|^2$$

= $\cos^4 \theta_{14} \sin^2 2\theta_{24} \sin^2 \theta_{34}$

$$\mathsf{P}_{\substack{(-)\\\nu_{\mu}\to\nu_{\mu}}}^{(-)} = 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

where
$$\sin^2 2\theta_{\mu\mu} = \cos^2 \theta_{14} \sin^2 \theta_{24}$$

CUSAT

Analysis Overview

Analysis Goal:

- Sterile neutrino search by looking at v_{μ} disappearance and v_{τ} appearance at NOvA Near Detector
- Constrain 3+1 oscillation parameters (Δm^2_{41} , $sin^2\theta_{24}$ and $sin^22\theta_{\mu\tau}$)

🚰 Fermilab

Analysis Overview

Neutrinos in narrow-band beam peaked at 2 GeV predominantly created by pion decays

- Substitution State Looking at the high energy neutrinos coming from kaons above τ threshold
- ♀ Search for v_{μ} → v_{μ} and v_{μ} → v_{τ}

Analysis Strategy

Solution \mathbb{Q}_{τ} event rates are maximized for $\Delta m_{41}^2 = 22 \text{ eV}^2$ as looking at high energy region with low L/E.

Use CVN and BDTs as primary selectors.

v_{μ} Event Selection

- v_{μ} CVN is used as a primary selector.
- Preselection cuts: To ensure the event quality and to remove the interactions in the surroundings of the detector.

v_{τ} Event Selection

- 3 BDTs are used as the primary selectors $(v_{\mu}, v_{e}, NC - v_{\tau}^{had})$ discriminants)
- **Preselection cuts: To** ensure the event quality and to remove the interactions in the surroundings of the detector.

v_{τ} Event Selection

 \bigcirc These are the other two discriminants used for the v_t event selection

Signal Predictions

- v_τ prediction after applying all the selection cuts, scaled to 8.06e20 POT
- \bigcirc v_µ prediction after applying all the selection cuts, scaled to 8.06e20 POT

Signal Predictions

Selection	$\nu_{\mu} { m CC}$	NC	$\nu_e \ \mathrm{CC}$	$\nu_{\tau} \ \mathrm{CC}$	Purity(S/S+B) %
$\overline{ u_{\mu} ightarrow u_{\mu}}$	$1.52\mathrm{e}{+06}$	14252	2063	6694	98.5
$ u_{\mu} ightarrow u_{ au}$	460	591	541	866	35.2

 $v_{\mu} \rightarrow v_{\mu}$ and $v_{\mu} \rightarrow v_{\tau}$ predictions at the point $\Delta m_{14}^2 = 22 \text{ eV}^2$ and $\theta_{\mu\tau} = 0.175 \text{ rad.}$ for 8.06 × 10²⁰ POT. The disappearing v_{μ} 's are 1.2e+05 events (~ 8%) in $v_{\mu} \rightarrow v_{\mu}$ selection

We used $\Delta m_{14}^2 = 22 \text{ eV}^2$, the point where we see maximum signal events and $\theta_{\mu\tau} = 0.175$, the point where we start seeing the appearing τ signal even after including all the systematics.

Systematic Uncertainties

v_T Selection

 \odot v_t cross-sections are not well constrained yet, so we added a 50% normalization uncertainty on just v_t cross-section.

Systematic Uncertainties

v_{μ} Selection

 \bigcirc Cross-section uncertainty and beam uncertainty are the dominant uncertainties for v_µ selection.

Sideband Studies

v_μ sideband: A mid v_μ CVN sideband
 region for v_μ Selection. All other
 selection cuts are same except CVN v_μ
 cut (0.35 < CVN v_μ < 0.5)

Sensitivity Studies

- Solution $v_{\mu} v_{\tau}$ fit to the 4-flavor oscillation parameters Δm^{2}_{41} and $sin^{2}2\theta_{\mu\tau}$.
- \odot Marginalized over sin²2 θ_{24} and sin² θ_{34} .
- Solution $v_{\mu} v_{\tau}$ fit to the 4-flavor oscillation parameters Δm^{2}_{41} and $sin^{2}\theta_{24}$.
- \bigcirc Marginalized over sin² θ_{34} .

Summary

- Solution This analysis considers the advantage of joint fit between v_{τ} appearance and v_{μ} disappearance to probe the existence of sterile neutrinos
- Solution \mathbb{S} Two sample selections were made $v_{\mu} \rightarrow v_{\mu}$ and $v_{\mu} \rightarrow v_{\tau}$
- Conducted systematics studies and sideband studies for these samples
- Solution A joint sensitivity study is conducted using these samples to the sterile neutrino oscillation parameters Δm_{41}^2 , $\sin^2\theta_{24}$ and $\sin^22\theta_{\mu\tau}$

Thanks for Your Attention!

Rijeesh Keloth I CUSAT

τ decay - Branching

Decay Mode	Branching(%)		
$\tau^- ightarrow e^- \bar{\nu_e} \nu_{ au}$	17.8		
$ au^- o \mu^- \bar{ u_\mu} u_ au$	17.4		
$\tau^- ightarrow h^- u_{ au}$	11.5		
$ au^- ightarrow h^- \pi^0 u_ au$	26.0		
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	9.5		
$ au^- ightarrow h^- h^+ h^- u_ au$	9.8		
$\tau^- \to h^- h^+ h^- \pi^0 \nu_\tau$	4.8		
Other modes with hadrons	3.2		
All modes containing hadrons	64.8		

Systematics Summary

	ν_{τ} Sig.	Background	ν_{μ} Sig.	Background
Cross-section	50.0	20.14	20.87	21.68
Beam	7.41	8.22	4.39	4.70
PPFX	8.38	8.5	11.08	10.36
Calib +/-	14.77	24.99	4.28	6.12
Calib Shape	7.88	8.07	2.06	0.01
Light Level	4.78	7.07	0.92	2.00
Cherenkov	1.91	0.97	0.82	0.70
ND Rock	0.0	0.22	0.23	0.94
Overall Normalization	1.12	1.12	1.12	1.12
Sum in quadrature	54.14	35.87	24.59	25.36

Off-axis Beam

Off-axis location reduces flux, but creates a narrowband beam
 The particular peak around 2 GeV was chosen to lie near the 'first' oscillation maximum for v_μ disappearance to measure θ₁₃ and δ

🚰 Fermilab

Neutrino Beam

- Protons collide with graphite target producing (mainly) pions and kaons
- Charged mesons are focused by two magnetic horns
 - Positively charged mesons focused for neutrino mode
 - Negatively charged mesons focused for anti-neutrino mode
- Focused particles decay to neutrinos and tertiary particles inside the decay pipe

v_{τ} Cross-section

The GENIE predicted cross-section for ν_{τ} CC events in C^{12} nucleus.

