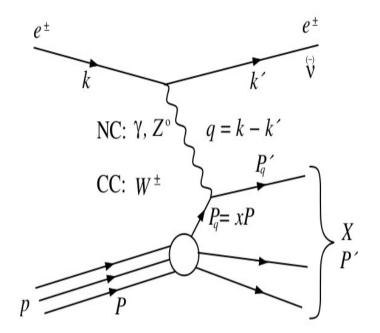
Study of compatibility of Parton Distribution Functions provided by different theory groups at high-x using ep collision data collected by the ZEUS detector

Ritu Aggarwal

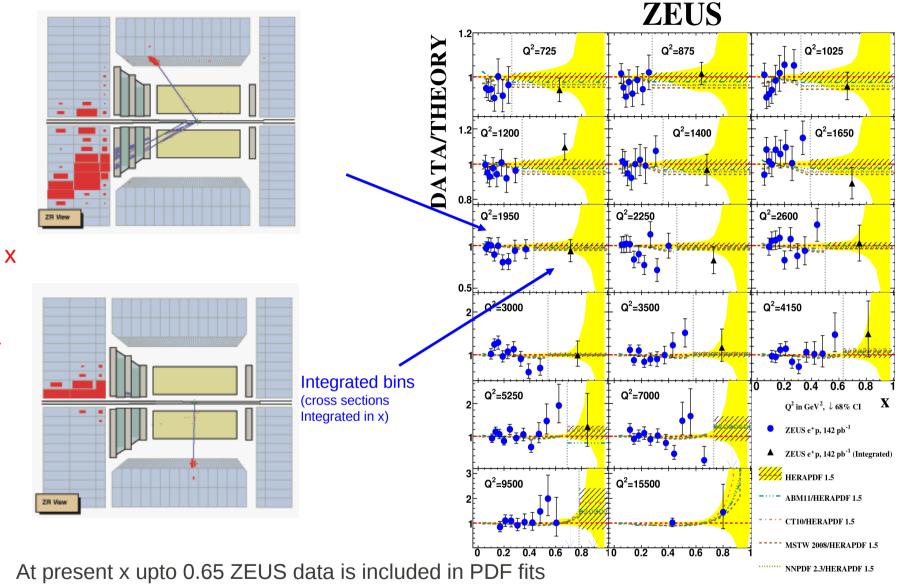

(on the behalf of ZEUS Collaboration)

Overview

- HERA Collider : Motivation of studying high-x data
- Transfer Matrix for ZEUS high-x data
- Use of Transfer Matrix to predict number of events in cross section bins
- Comparison of different PDFs to the high-x data
- p-values from different PDFs

ZEUS Experiment at HERA : An Overview

HERA


e beam : 27.5 GeV
p beam : 920 GeV
Centre of mass E : 318 GeV

H1 & ZEUS : General Purpose Detectors Detectors Data Taking : 1992-2007

DIS Scaling Variables :-

- → Q²: Four momentum transfer Q² = $-(k - k')^2 = -q^2$
- x : momentum fraction of struck quark) x = Q² / 2 k.p

Motivation of studying published high-x data

Note the uncertainity bands above $x \sim 0.65$, can high-x data impact here

DAE-BRNS HEP Symposium 2018

ZEUS Collaboration; H. Abramowicz et al. Measurement of Neutral Current e [±]p Cross-Sections at High Bjorken x with the ZEUS Detector Phys. Rev. D 89 (2014) 072007

Transfer Matrix for high-x data

Transfer Matrix for the detector is developed using which number of events reconstructed in data can be predicted from any PDF as below.

→ Get a prediction for the generator/hadron level number of events, which is luminosity x radiative corrections x Born cross section.

i.e.
$$\nu_{i,k} = \mathcal{L}K_{ii}\sigma_{i,k}$$

• Apply transfer matrix a_{ij} to get the number of events in a bin j.

$$\nu_{j,k} \approx \sum_{i} a_{ij} \nu_{i,k}$$

 a_{ij} has all detector and analysis effects (probability of an event reconstructed in jth bin to come from ith true bin)

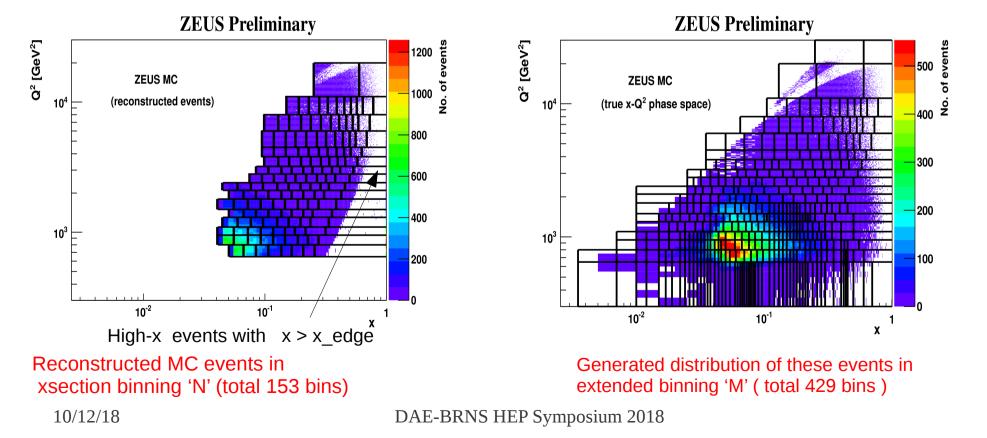
L : data luminosity

 K_{ii} : Radiative corrections (calculated using HERACLES)

 $\sigma_{_{i,k}}$: born level cross sections in i^{th} bin for $k^{\text{th}}\,\text{PDF}$

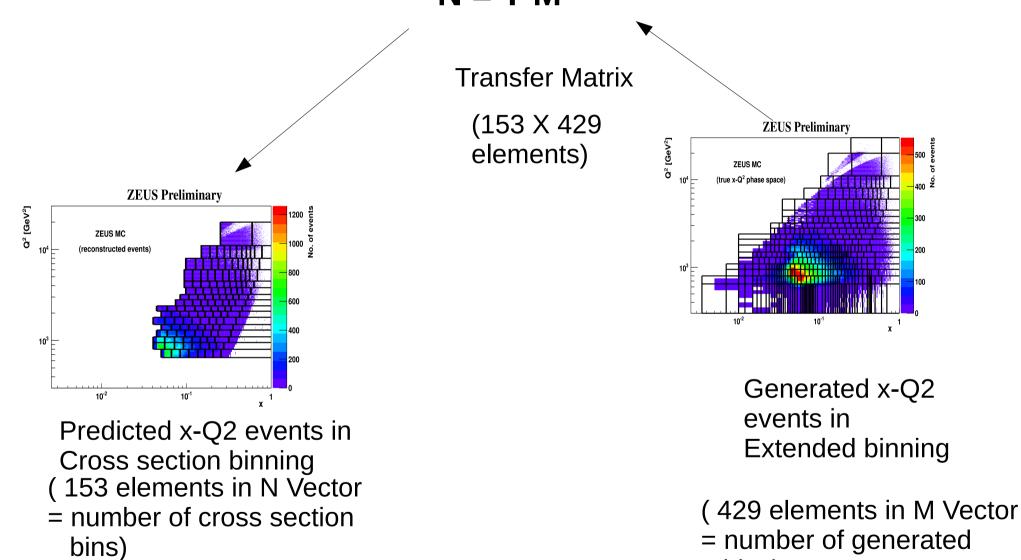
Transfer Matrix : Probability of an event reconstructed in jth bin to come from ith true bin

Tracing back the path of MC reconstructed events in the generated x-Q² phase space


 $a_{ij} = \frac{\sum_{m=1}^{M_i} \omega_m I(m \in j)}{\sum_{m=1}^{M_i} \omega_m^{MC}}$

 a_{ii} = probability of an event reconstructed in jth bin to come from ith bin

 ω_m = MC weights given to mth event in bin i


I = 1 if mth event is reconstructed in bin j, else = 0

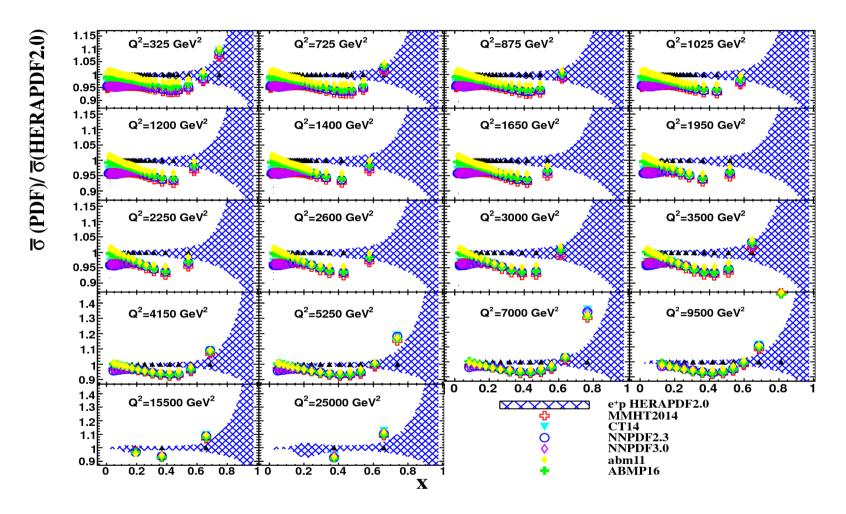
 M_i = total events generated in ith bin

Using Transfer matrix to predict no. of events reconstructed in a given cross section bin

N = T M

bins)

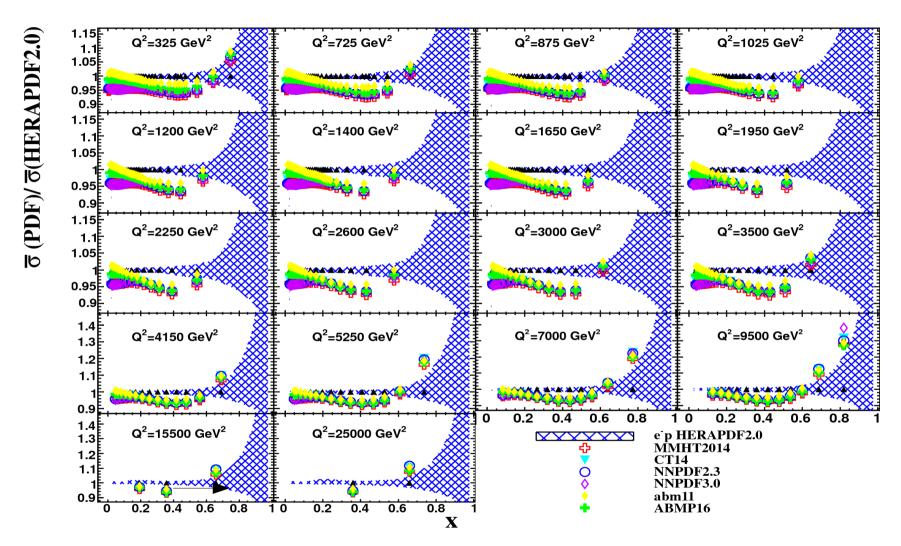
Comparison of Different PDFs


Two type of comparisons

1) <u>Comparison of M</u> from different PDFs : comparison of the bin integrated born level Cross sections in $x-Q^2$ bins using different PDFs (next two slides)

2) <u>Comparison of N</u> from different PDFs : Convolute M with Transfer Matrix and to get a prediction of number of events in the cross section bins v from different PDFs (rest of the talk)

- ν from different PDF can be compared to n from data and Poisson statistics is used to probe how well given PDF is defining the data.
- p-value is determined for different PDFs
- Comparison of p-values in high-x and lower-x range is shown for different PDFs


Ratio of generated level cross sections in different PDFs (at NLO) to HERAPDF2.0NLO for M bins (e+p)

Where $\overline{\sigma}$ is the total integrated cross section in a given x-Q² bin There is a shape difference between HERAPDF & other PDFs, approaches 10% at x ~ 0.4.

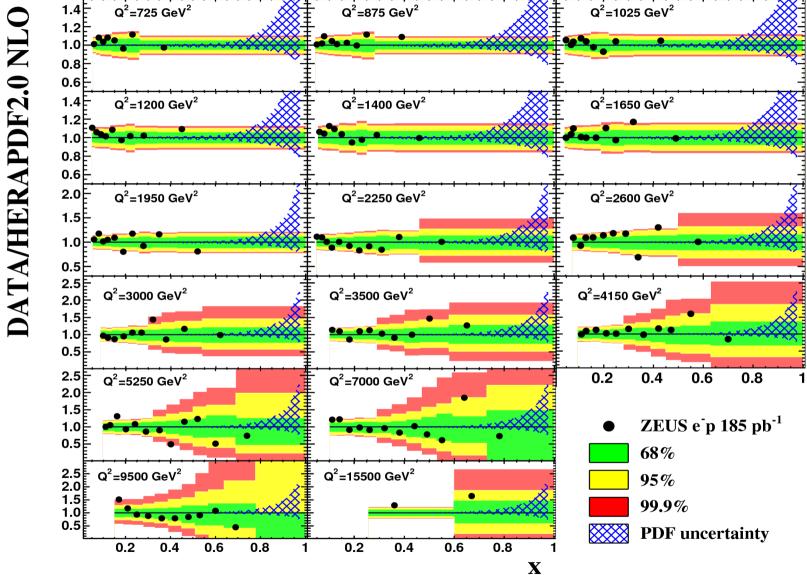
DAE-BRNS HEP Symposium 2018

Ratio of generated level cross sections in different PDFs (at NLO) to HERAPDF2.0NLO for M bins (e-p)

There is a shape difference between HERAPDF & other PDFs, approaches 10% at x ~ 0.4.

Ratio of No. of events in data to HERAPDF2.0 NLO and 1,2,3 sigma bands from Poisson Statistics

ZEUS Preliminary


10/12/18

DAE-BRNS HEP Symposium 2018

R. Aggarwal, A. Caldwell, Error bars for distributions of numbers of events. Eur. Phys. J. Plus 2012, 127, 1–8.

Ratio of No. of events in data to HERAPDF2.0 NLO and 1,2,3 sigma bands from Poisson Statistics

Probability for explaining high-x data from different PDFs

PDF	e ⁻ p	e^+p
HERAPDF2.0	0.05	0.5
CT14	0.002	0.8
MMHT2014	0.002	0.8
NNPDF2.3	0.00007	0.6
NNPDF3.0	0.0002	0.7
ABMP16	0.01	0.8
ABM11	0.001	0.6

p-value for e-p and e+p data sets are shown on comparison to different PDFs

(includes only statistical fluctuation from Poisson probabilities).

Conclusions :

[>]p-values from MMHT2014, CT14nlo, NNPDF2.3, ABM higher than HERAPDF2.0 for e⁺p

[>]Much worse for e⁻p

10/12/18

DAE-BRNS HEP Symposium 2018

F. Beaujean et al, p-values for model evaluation, Phys. Rev. D 83, 012004 (2011). arXiv:1011.1674

Probability for explaining high-x data from different PDFs in different x-ranges

	e	-p	e^+p			
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$		
HERAPDF2.0	0.06	0.2	0.6	0.1		
CT14	0.0008	0.2	0.7	0.6		
MMHT2014	0.00003	0.1	0.6	0.6		
NNPDF2.3	0.00007	0.2	0.6	0.6		
NNPDF3.0	0.00003	0.2	0.6	0.6		
ABMP16	0.01	0.2	0.8	0.5		
ABM11	0.03	0.3	0.7	0.4		

p-value for e-p and e+p data sets are shown on comparison to different PDFs for two different x ranges.

Conclusions :

Disagreement comes primarily from lower x in e-p

Statistical and systematic uncertainties

Type of Systematic Uncertainties :

Affecting the predictions at generator level (M values)
 Affecting the Transfer Matrix T

Type I : 1) Luminosity uncertainty scaling M values

Type II :

1) MC statistical fluctuations (uncorrelated uncertainty)

2) All correlated and uncorrelated systematic uncertainties as in high-x paper

3) Choice of PDF for building T

Nomalization Error : Vary generated events by 1.8 % up and down and calculate new p-value

,	$ \begin{array}{c c} +1.8 \% \\ \hline e^{-}p & e^{+}p \end{array} $		-p	ĺ	(Scale M by 1.8% up)					
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$		(
HERAPDF2.0	0.02	0.1	0.2	0.3						
CT14	0.02	0.3	0.8	0.5		e ⁻ p e ⁺ p		f p		
MMHT2014	0.008	0.2	0.8	0.5	PDF	x < 0.6	-			
NNPDF2.3	0.009	0.3	0.8	0.4	HERAPDF2.0	0.06	$\frac{x \ge 0.0}{0.2}$	0.6	$\frac{x \ge 0.0}{0.1}$	
NNPDF3.0	0.008	0.3	0.8	0.4			-		_	
ABMP16	0.04	0.3	0.6	0.4	CT14	0.0008	0.2	0.7	0.6	
ABM11	0.03	0.3	0.4	0.2	MMHT2014	0.00003	0.1	0.6	0.6	
	-1.8~%				NNPDF2.3	0.00007	0.2	0.6	0.6	
	e^-p		e^+p		NNPDF3.0	0.00003	0.2	0.6	0.6	
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$	ABMP16	0.01	0.2	0.8	0.5	
HERAPDF2.0	0.03	0.3	0.8	0.2	ABM11	0.03	0.3	0.7	0.4	
CT14	0.0	0.08	0.4	0.6						
MMHT2014	0.0	0.04	0.2	0.6		(Scale M by 1.8% down)				
NNPDF2.3	0.0	0.08	0.2	0.6						
NNPDF3.0	0.0	0.08	0.2	0.6		X	(,			
ABMP16	0.0003	0.1	0.7	0.6						
ABM11	0.004	0.2	0.7	0.5						

Dominant systematics : due to error in normalization of data quoted as 1.8 %

Conclusions :

- >p-values from different PDFs change differently
- Similar behavior as when using only statistical fluctuations.

Summary

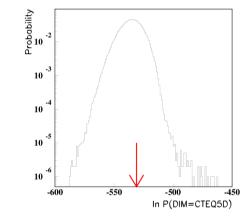
Technique of building Transfer Matrix Shown.

- --Transfer Matrix can be used to predict number of events in the given cross section bins in MC.
- -- Transfer Matrix can be used to compare number of events reconstructed by different PDFs.
- p-values from different PDFs calculated and shown on the basis of their explanation to the high-x data using Transfer Matrix.
- -- Differences are seen in different PDFs
- -- Differences are also there for e-p and e+p data sets and the high and lower x ranges.

p-values from dominant systematic uncertainty of normalization error shown.

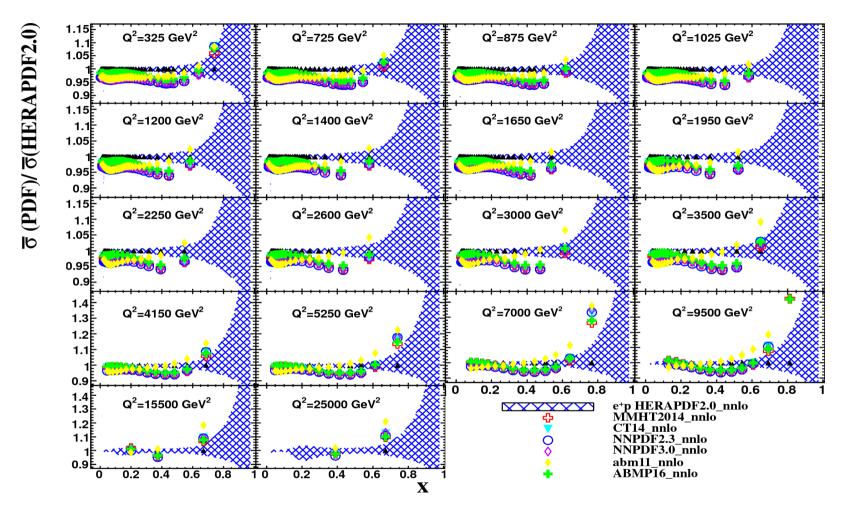
Prescription on how to include high-x data in PDF fits is to be studied further.

Back up

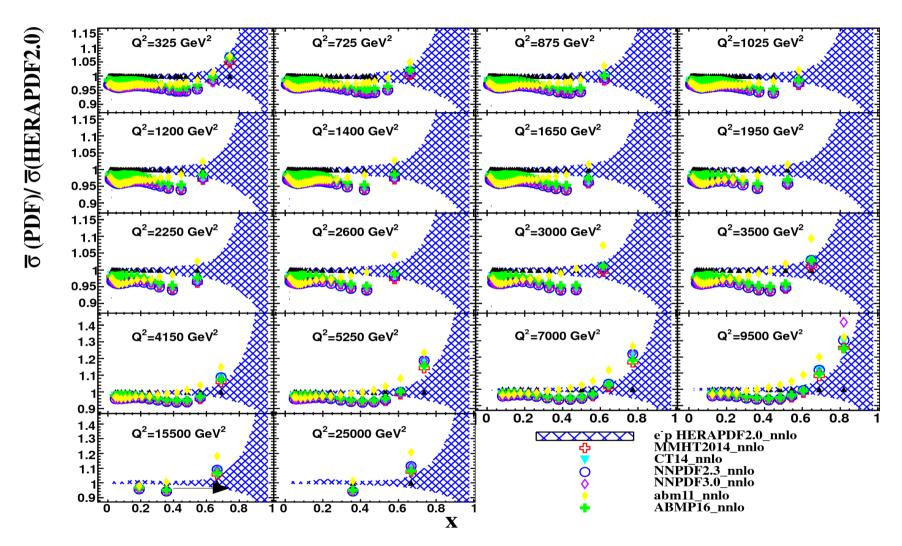

P-value determination

Total probability for each PDF :

$$P(D|M_k) = \prod_j \frac{e^{-\nu_{j,k}} \nu_{j,k}^{n_j}}{n_j!}$$


m .

3


P-value is calculated by integrating out the probability from the left edge till red for the given PDF

Ratio of generated level cross sections in different PDFs (at NNLO) to HERAPDF2.0NLO for M bins (e+p)

Where $\overline{\sigma}$ is the total integrated cross section in a given x-Q² bin There is a shape difference between HERAPDF & other PDFs, approaches 7% at x ~ 0.4.

Ratio of generated level cross sections in different PDFs (at NNLO) to HERAPDF2.0NNLO for M bins (e-p)

There is a shape difference between HERAPDF & other PDFs, approaches 7% at $x \sim 0.4$.