XXIII DAE-BRNS High Energy Physics Symposium 2018

Tau Identification Performance at CMS experiment

Presented by,

VINAYA KRISHNAN MB

Institute of Physics, Bhubaneswar

CMS collaboration

INTRODUCTION

- The mass of Tau lepton is $m_{\tau}=1776.86\pm0.12$ MeV and it is the only lepton that can decay weakly to hadrons (a.k.a Hadronic tau).
- Hadronic taus (τ_h) are reconstructed and identified using hadron plus strip (HPS) algorithm.
- Decay products of τ_h are mainly combination of charged and neutral pi-mesons and tau nutrino, this makes it more difficult to distinguish τ_h decay products from quark and gluon jets.
- Two discriminants are used to seperate τ_h from jets. Such as,
 - Isolation sum discriminant.
 - Multi variant analysis (MVA) based discriminant.
- To measure τ_h isolation and identification efficiencies we used tag and probe method using $Z/\gamma^* \rightarrow \tau\tau \rightarrow \tau_{\mu}\tau_h$ events.

HPS algorithm (Run 1)

- Start from AntiK_⊤ (R=0.4) PF jet
- Reconstruct decay modes with one or three charged hadrons, and one or two neutral pions
- Neutral Pions reconstructed using an elongated $\eta \times \phi$ strips collecting energy spread from photon conversions due to magnetic field.
- Charged hadrons and photons reconstructed from tracks and calorimeter energy using a particle-flow technique
- Signal constituents are required to be in a smaller cone $(p_T dependent cone, R_{sig} =$ 3GeV/p_⊤)
- Mass constraints compatible with ρ and a₁ meson mass

Fig.1

HPS algorithm (Run 2)

- The charged pion nuclear interaction with tracker material causes cascades of low p_T electrons and photons, that can appear outside of strip. And photons from neutral pions also have stong probabilty to convert electron-positron pair, after multiple scattering and bremsstrahlung they may appear in the outside the strip.
- > Naively, these decay products can be integrated into the strip by suitably increasing its size, called Dynamic strip reconstruction.
- > The strip size is the function of $e/g p_T$ which can be written as,

$$\Delta \eta = f(p_T^{\gamma}) + f(p_T^{\text{strip}})$$

 $\Delta \phi = g(p_T^{\gamma}) + g(p_T^{\text{strip}}).$

Isolation Sum Discriminants

(Cut based Isolation)

The isolation sum defined as,

$$I_{\tau} = \sum_{\tau} P_{\tau}^{h\pm} (d_{z} < 2mm) + max(0, \sum_{\tau} P_{\tau}^{\gamma} - \Delta \beta \sum_{\tau} P_{\tau}^{h\pm} (d_{z} > 2mm))$$
Charged isolation
Photon isolation
Pileup correction

Charged Isolation: Summing the p_T of charged particle within the isolation cone (radius =0.5(0.3)) of centered on the direction of the τ_h candidate. The pileup(PU) contribution is suppressed by taking account of charged particle originated within the < 0.2 cm distance from the τ_h production vertices.

Photon Isolation: Summing the p_T of photons within the isolation cone (radius =0.5(0.3)) of centered on the direction of the τ_h candidate.

Pileup correction: PU corrections for photon isolation estimated from p_T sum of charged particles of > 0.2cm distance from the τ_h production vertices, but cone of Radius 0.80. The imperical constant $\Delta\beta$ value is 0.2 in 2016 data.

Cut based Isolation

Dynamic strip reconstruction allows photon candidate outside the signal cone can contribute to the signal, which also effectively increase the jets- τ_h mis-identification probablity. Which introduce an additional quantity called \boldsymbol{p}_T strip outer , it defined as:

$$p_T^{strip,outer} = \sum p_T^{e/\gamma} (\Delta R > R_{sig})$$

It is the p_T sum of e/γ candidates included in the strip, but located outside of the signal cone. (see the red γ). Applying a cut on p_T outer less than 10% of p_T tau reduce around 20% of jets- τ_h mis-identification probablity.

MVA based Discriminant

A classifier based on decision boosted trees (BDT) is used to discriminate τ_h decay product from quark and gluon jets. The variables used as inputs of to the BDT are,

- > Isolation sum
- $\succ \tau_h$ decay modes
- The impact parameter d_0 of the highst p_T track of τ_h candidate.
- The distance between the τ production and decay vertices.
- \triangleright p_T strip outer
- Multiplicity of photon and electoron, candidates.

Tau Isolation Working points (WP)

- VVLoose, VLoose, Loose, Medium and Tight WP are defined for the cut-off isolation discriminant by isolation sum I_τ < 4.5,3.5,2.0,1.0 and 0.8 respectively.
- The MVA working points are defined on the output of the discriminator for different identification efficiencies: very loose (90%), loose(80%),medium(70%),tight (60%), very tight (50%), very very tight (40%).

τ_h Isolation and Identification efficiency

- Efficiencies are measured using Tag and Probe technique.
- $Z/\gamma^* \rightarrow \tau \tau \rightarrow \mu \tau_h$ events are used, where muon $(p_T > 29 \text{GeV})$ as a Tag and $\tau_h (p_T > 20 \text{GeV})$ is used as probe.
- Invariant mass (m_{vis}) distribution of the muon and τ_h is fitted to extract the efficiency.

μτ_h visible mass for passing probe

Comparision distribution of identified τ_h from its decay modes on 2016 and 2017 data.

Measurement of e/μ→τ_h misID probablity

The mis-identification probablity is measured similarly by tag and probe method using $Z/\gamma^* \rightarrow ee$

DP 2018/026

Distribution of τ_h mass

Comparision distribution of identified τ_h from its decay modes on 2016 and 2017 data.

Jets→τ_h **Fakerate measurement**

jet $\to \tau_h$ mis-id probablities is measured using W($\mu\nu$) +jets events and tt $\to e\mu$ + jets events.

SUMMARY

- Discussed τ_h identification methods employed at CMS.
- Presented its performance.
- Performance are measured from data in terms of efficiency and mis-id probablity.
- The measured performance in data is consistent with that of the simulation.

Back up

TAU 16-003

The unknown functions are determined from a single τ lepton MC event sample, generated with uniform p_T in the range of 20 to 400 GeV and $|\eta| < 2.3$, such that 95% of all electrons and photons that arise from τ_h decays are contained within one strip. $f(p_T) = 0.20 \cdot p_T^{-0.66}$

$$g(p_T) = 0.35 \cdot p_T^{-0.71}$$
.