

Modeling neutron damage in silicon detectors for high energy physics experiments

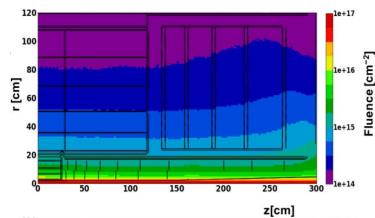
Chakresh Jain

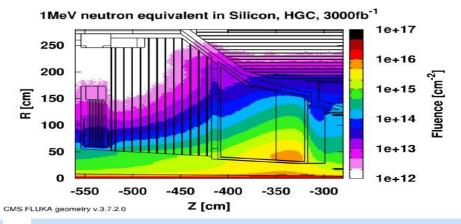
Geetika Jain, Ashutosh Bhardwaj and Kirti Ranjan

XXIII DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM

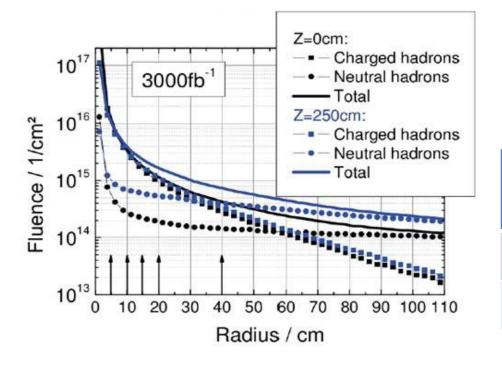
IIT Madras

December 10-14, 2018


Outline



- Introduction and Motivation
- Proton radiation damage Model
- Difference between proton and neutron damage
- Development of the neutron damage model
- Simulation Structure and parameters
- Results : Simulation vs Measurements
 - V_{FD} , I_{LEAK} , CCE
- Summary


Introduction and Motivation

Predictions of the maximum 1MeV n_{eq} fluences normalized to 3000fb⁻¹ of HL-LHC

Expected particle fluence in the Tracker volume

Expected particle fluence in *End cap calorimeter*

HL-LHC Phase

•Peak L ~ 5-7 x 10³⁴ cm⁻²s⁻¹

•Integrated L = 3000 fb^{-1} (10 yrs of operation)

•Pileup ~ 140-200

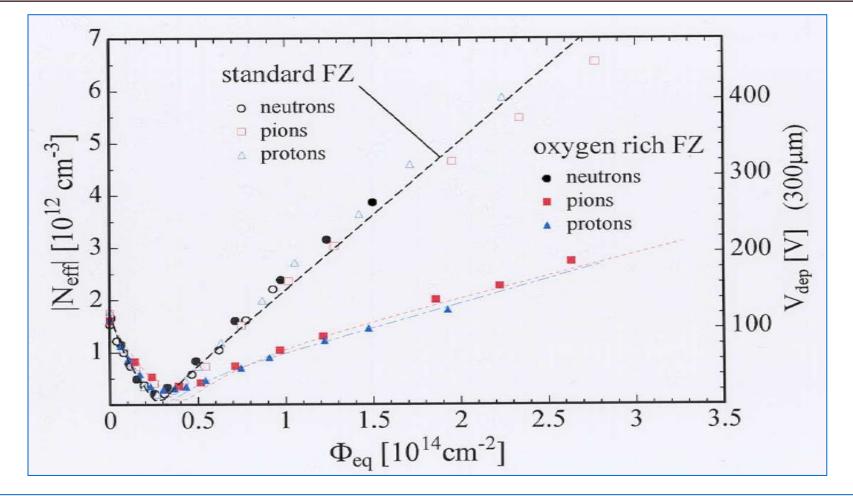
•Particle density: 5-10 times higher

Region	$oldsymbol{\phi}_{ m max}$ (1 MeV n _{eq} cm ⁻²)	
Outer tracker	1.1 x 10 ¹⁵	
Calorimeter	1.5 x 10 ¹⁶	

Simulations in TCAD Silvaco

Proton Radiation Damage Model

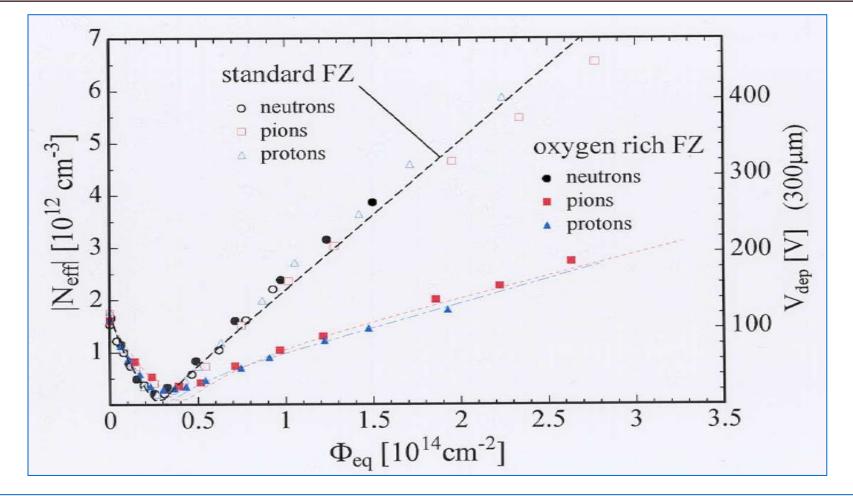
Bulk Damage = 2 Trap Proton Damage Model* (Delhi Model)
Surface Damage = Oxide charge density (Q_F) + 2 Interface traps


Bulk Damage Model				
Тгар Туре	Energy Level (eV)	g _{int} (cm⁻¹)	σ _e (cm²)	σ _h (cm²)
Acceptor	$E_{c} - 0.51$	4	2 x 10 ⁻¹⁴	3.8 x 10 ⁻¹⁴
Donor	E _v + 0.48	3	2 x 10 ⁻¹⁵	2 x 10 ⁻¹⁵
Surface Damage Model				
$Q_F \sim 3e11$ to 1.5e12 cm ⁻² (Depending on the fluence)			?)	
Trap Type	Energy Level (eV)	Trap density (cm ⁻³)	σ _e (cm²)	σ _h (cm²)
Acceptor	$E_{c} - 0.60$	0.6 x N _{it}	1 x 10 ⁻¹⁵	1 x 10 ⁻¹⁵
Acceptor	$E_{c} - 0.39$	$0.4 \times N_{it}$	1 x 10 ⁻¹⁵	1 x 10 ⁻¹⁵

where, N_{it} is the interface trap density which is similar in magnitude to the oxide charge denisty Q_{F}

No Neutron Radiation Damage Model yet for Sllvaco !!

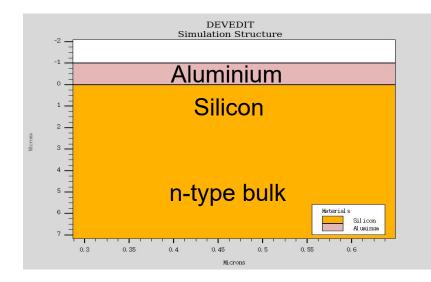
R. Dalal. Simulation of Irradiated Si Detectors. PoS, Vertex-2014 030.


Difference between proton damage and neutron damage

*Introduction rate (g_{int}) of donor traps is 0.5 cm⁻¹ for neutron irradiation, which is one sixth of the introduction rate of donortraps for protons irradiation.

Measurements : Gunnar Lindstrom, University of Hamburg + CERN-RD48, PIXEL 2000 Genoa 05-09 June 2000 *Reference : I. Pintilie et al., Nuclear Instruments and Methods in Physics Research A 611 (2009) 52–68

Difference between proton damage and neutron damage

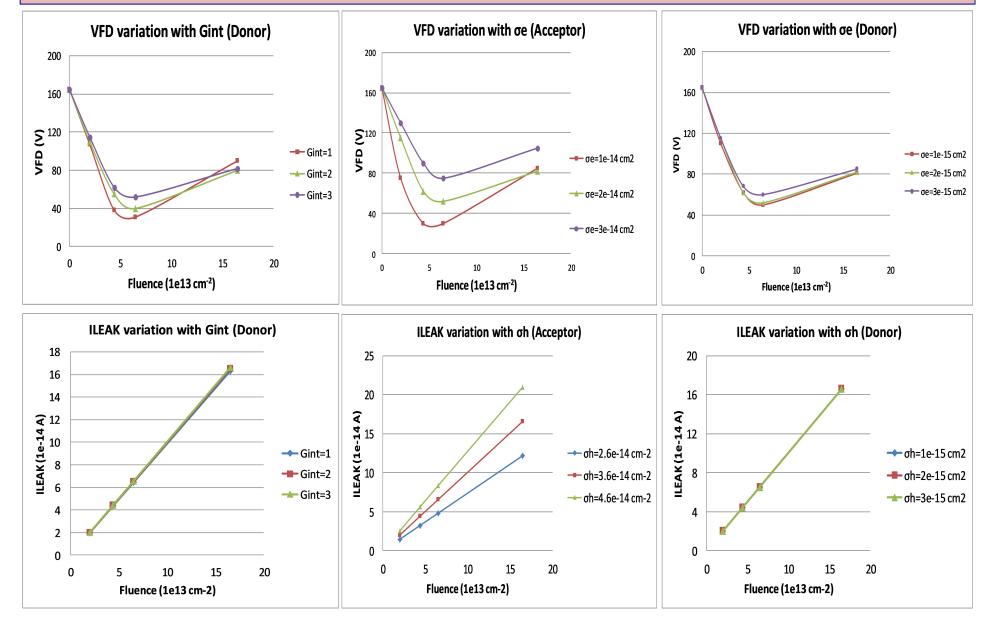


*Introduction rate (g_{int}) of donor traps is 0.5 cm⁻¹ for neutron irradiation, which is one sixth of the introduction rate of donortraps for protons irradiation.

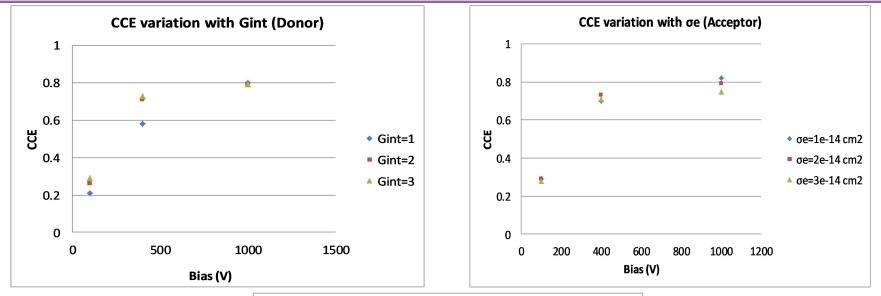
Measurements : Gunnar Lindstrom, University of Hamburg + CERN-RD48, PIXEL 2000 Genoa 05-09 June 2000 *Reference : I. Pintilie et al., Nuclear Instruments and Methods in Physics Research A 611 (2009) 52–68

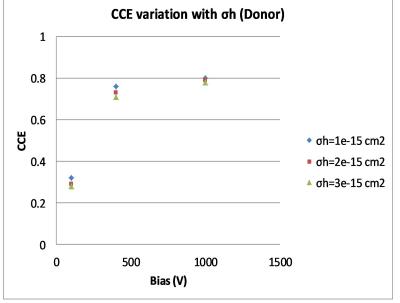
Development of the Neutron Damage Model

Simulation structure and parameters



Optical Source			
Laser	Infrared		
Wavelength	1060 nm		
Mixed mode circuit			


Simulation Parameters				
X Dimension	1 µm			
Y Dimension	300 µm			
Z Dimension	1 µm			
n-bulk doping density	2.37e12 cm ⁻³ 1e12 cm ⁻³			
n⁺/p⁺ peak doping density	1x10 ¹⁸ cm ⁻³			
Junction depth	1 µm			
Temperature	263 K			


- ${\scriptstyle \Box}~~V_{FD},~I_{LEAK}$ and CCE simulation have been carried out
- □ Fluence range : 0 to 9e14 1MeV n_{eq}cm⁻²
- AC small signal frequency : 10^3 Hz for C_{diff} (diffusion capacitance)

Sensitivity of Macroscopic parameters of the detector with respect to trap parameters (1/2)

Sensitivity of Macroscopic parameters of the detector with respect to trap parameters (2/2)

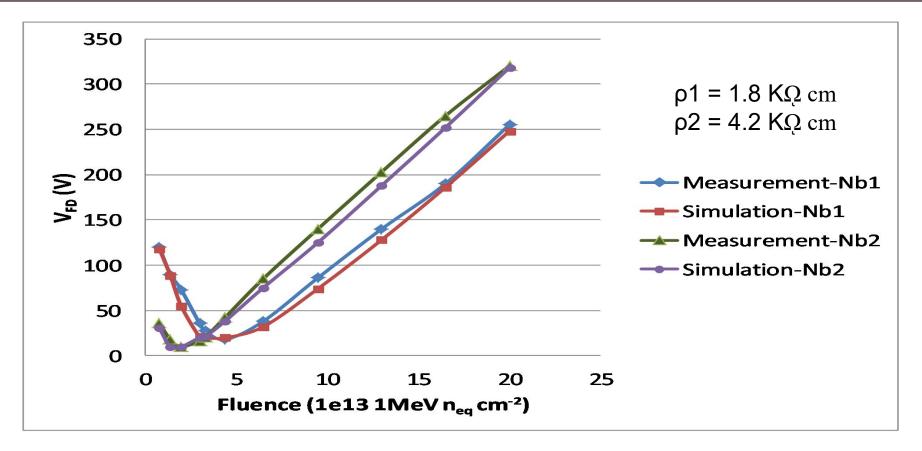
Neutron damage model

Results of the sensitivity study of V_{FD} , I_{LEAK} and CCE towrds various trap parameters

 \succ V_{FD} has a strong dependecy on g_{int} (donor trap) and σ_e , σ_h (Acceptor traps)

> I_{LEAK} depends mainly on σ_{h} (Acceptor).

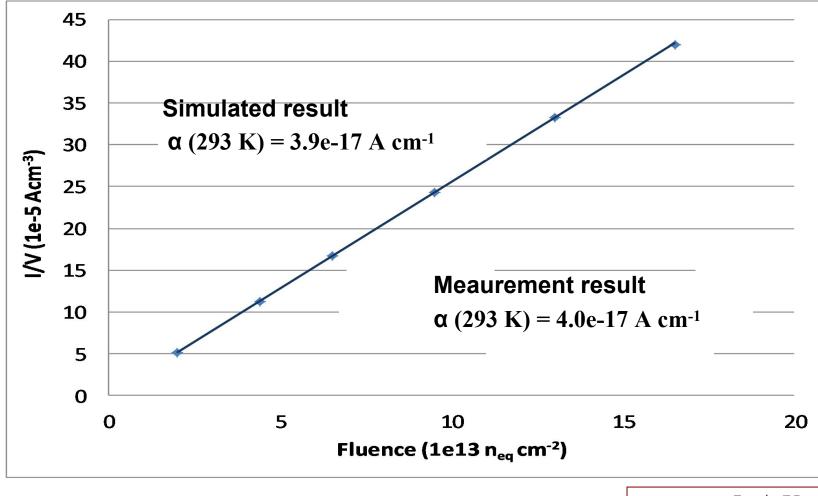
 \succ CCE depends mainly on g_{int} (donor trap) and slightly on other parameters.


Two bulk traps : 1 Acceptor + 1 Donor
Trap parameters : Trap type, Energy level, g_{int}, σ_e, σ_h

Тгар Туре	Energy Level (eV)	g _{int} (cm ⁻¹)	σ _e (cm²)	σ _h (cm²)
Acceptor	$E_{c} - 0.51$	4	7.2 x 10 ⁻¹⁵	2.8 x 10 -14
Donor	$E_v + 0.48$	1	2 x 10 ⁻¹⁵	2 x 10 ⁻¹⁵

No Surface Damage Model has been used !!

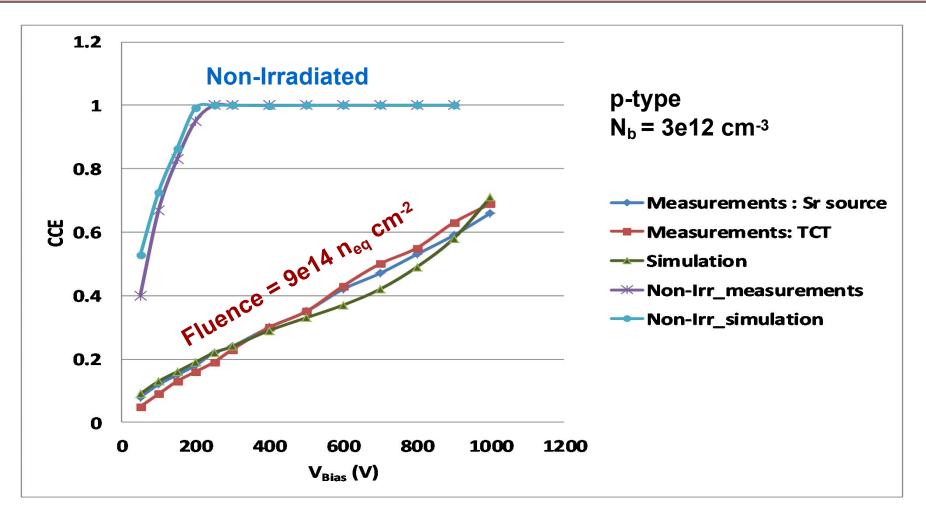
Results and comparisons Simulations and Measurements


V_{FD} Variation with Neutron Fluence (n-type)

- For n-type sensor, V_{FD} first decreases, reaches minima and thereafter it increases with increasing neutron fluence.
- As fluence increases the effective doping concentration decreases because of the creation of mainly acceptor traps following by the *type inversion** of the bulk material.

*Reference : F. Hartmann, Evolution of Silicon Sensor Technology in Particle Physics, Springer, 2009. Measurements : Gunnar Lindstrom, University of Hamburg + CERN-RD48, PIXEL 2000 Genoa 05-09 June 2000

I_{LEAK} Variation with Neutron Fluence (n-type)



where, α is the current related damage paramter given by

 $\alpha = \frac{I / V}{\phi}$

> The saturation value of the leakage current increases with increase in fluence.

CCE variation with V_{Bias}

- For any bias voltage CCE is found to decrease with increase in neutron fluence.
- > For any fluence CCE is found to increase with increase in applied bias.

Measurements : E. Curras. Nuclear Instruments and Methods in Physics Research A, Proceeding 2016

Summary and future outlook

- Sensitivity studies have been performed by varying trap parameters to investigate macroscopic properties like V_{FD}, I_{LEAK} and CCE.
- > The effective two traps neutron damage model has been proposed.
- Good agreement has been observed for V_{FD} against measuremenst up to a fluence of 1.65e14 1MeV n_{eq} cm⁻².
- \succ α value is found to be very close to the value published in literature.
- CCE simulations were performed both for non-irradiated and irradited devices and they are found to be in good agreement with measurements.
- > More simulations need to be performed at different temperatures.
- Simulations for p-type bulk need to be performed as well.
- More TCT Simulations would be done to find out effective trapping probability of charge carriers in different bulk type substrates.

Thanks for your attention !