



# Development of a Cooling setup for Muon Chamber (MUCH) electronics for mini CBM experiment

Mitali Mondal SRF, VECC

On behalf of

Chandrasekhar Ghosh EHEPAG, VECC

# **Outline:**

- Requirement of Cooling in mini CBM and main CBM experiment.
- Development and demonstration of aluminum plate water cooling setup.
- Design of Air cooling setup for mCBM.
- Thermoelectric Peltier Cooling test.
- Rectangular Water Channel cooling for mini CBM.

# Requirement of Cooling for mCBM MUCH FEB

- One Trapezoidal MUCH consists of 18 no of FEBs.
- Each FEB deposits 2.5 Watt heat.
- > Total heat load for each sector= 2.5 X18 W= 45 Watt.
- We need to remove this heat continuously to keep all the FEBs below 25 °C







# Basic design of the cooling plate

Two schemes are followed for mechanical design of the cooling plate:

**Scheme-I**: 7 mm Grooves are made inside plate and then welded with 3 mm Al plates.

**Scheme-II**: Channels are made inside the plate and Al-pipe is inserted.

- Water channels are drawn closest to the FEBs to maximize the heat transfer.
- Temperature sensors are placed on top of cooling plate for temperature monitoring and control.
- A micro-controller drives the submersible suction pump taking input from the temperature sensor.
- Water chiller is used to provide chilled water at low temperature (10 15 $^{\circ}$  C). The submersible pump is placed inside the water chiller.

#### Scheme-I: in VECC workshop



- >A 10 mm thick Al sheet was taken, and T-shaped groove was drilled into the sheet.
- >The groove was covered with a 2mm thick Al strip, resulting in a water channel inside the sheet.





Real Size cooling plate

Water Output

Water Input

# **Water Cooling setup at VECC**



# Flow Chart of the water cooling Process:



## **Aluminum plate Cooling results:**

We tested the temperature stability with continous heating of 45 Watt using heating resistors. Tempearture was stable during 95 hours of continous operation at VECC, lab.



# **Cooling Plate arrangement at CERN SPS H4 Test Beam line**





At CERN SPS H4 beam test during December 2016 two cooling plates were used

- One developed at Bose Institute\*
- Other one developed at VECC Workshop

Both performed well to maintain the FEB temps below 25°C

\*D. Nag et al, DAE Symp. on Nucl. Phys. 76 (2016).

## Effect of Aluminium plate on momentum of primary and secondary particles at TOF:



\*Plot courtesy: Omveer Singh, AMU



Need to use minimum amount of Aluminium in MUCH coverage

# Air Cooling setup version-1

### **Component details:**

No of Heating elements= 14 Resistance value= 10 Ohm Heat deposited by each= 2.5 Watt Temp sensor= DS18B20

### **FAN Details:**

Operating Voltage: 12.6 Volt

Airflow: 5.1 m³/minute

Rated Speed: 14900 rpm

Lifetime: 70,000 hours continuous

working







## Results of Air cooling setup with and without envelope







#### **Results:**

- 1. Without envelope case: within 5 mins the temp value comes within 25°C to 28°C.
- 2. With envelope case: within 10 mins temp value comes within 31°C to 34°C.
- 3. If we can make some proper airflow duct then cooling efficiency may get improved.

# Air cooling setup version-2



Dummy of real size detector With FEE boards mounted



Colors show different Position of the temp sensors

Variation of temperature at different position with time

#### **Observations:**

- 1. From the temperature profile it can be seen that if no cooling is applied then the heating element temp rises up to 50°C.
- 2. From the plots we can infer that after cooling the final temp value lies between 25°C to 31°C.

It's a nice observation that almost all the heating element temp goes down below 28°C, the blue element shows relatively higher temp as it is slightly out of the air flow path.

# Thermoelectric Peltier cooling using 2mm Aluminium plate





Thermoelectric cooling resulted in uneven cooling of the aluminum plate surface



#### DATA SET 1 (R.T=23.5°C, R.H= 46%)

| SENSOR<br>No. | Before<br>cooling<br>stable<br>temp(° C) | After peltier cooling stable temp(° C) | ΔT (°C) |
|---------------|------------------------------------------|----------------------------------------|---------|
| Т3            | 35.50                                    | 30.50                                  | 5       |
| Т8            | 31.75                                    | 24.00                                  | 7.75    |
| T4            | 34.50                                    | 29.00                                  | 5.5     |
| T1            | 36.50                                    | 32.00                                  | 4.5     |
| T2            | 35.00                                    | 31.25                                  | 3.75    |
| T9            | 33.75                                    | 30.00                                  | 3.75    |

# **Rectangular Water Channel Cooling for mCBM**









## **Water Channel Cooling setup in VECC**







## **Component details:**

No of Heating elements= 18 Heating applied= 2.5W X 18 = 45Watt Water Flow rate= 14 Lit/Hour Tin= 19° C Tout=22.75° C

#### **Results:**

- All the dummy FEBs were placed on the channel
- Temp of all FEBs were well maintained around 20°C
- Flexible cable length from FEB to PCB connector increases more than 10 cm



# **New Layout for rectangular water channel**



## **Modified water channel prepared at VECC Workshop**



All the FEBs can be positioned on the Water channel using Flexi cable of length 10 cm

### **Component details:**

No of Heating elements= 18 Heating applied= 2.5W X 18 = 45Watt Water Flow rate= 14 Lit/Hour Tin= 19° C Tout=22° C

#### **Results:**

- All the dummy FEBs were placed on the channel
- Temp of all FEBs were well maintained around 20°C

## **Conclusion:**

- > Two type of aluminum cooling plate for MUCH electronics cooling has been fabricated and tested.
- Few iterations of Air cooling setup has been demonstrated.
- Peltier cooling setup was developed No satisfactory result. Heat extraction issue from hot side and uneven cooling of the aluminum plate.
- Rectangular water channel cooling setup is developed at VECC Workshop this accounts the low material budget criteria in the detector coverage.
- The design of entire water cooling setup structure for main CBM experiment is under process.

## Thank You