# Electronics and DAQ for the magnetized mini-ICAL detector at IICHEP

Mandar Saraf, TIFR, Mumbai

On Behalf of the INO Electronics Team

## **INO ICAL Detector**



| No of Modules                  | 3     |
|--------------------------------|-------|
| No. of Layers/Module           | 150   |
| No. of RPCs/Layer/Module       | 64    |
| No. of ½<br>Roads/Layer/Module | 8     |
| No. of RPC units               | 28800 |
| No. of readout strips          | 3.7M  |

#### Drawing Courtesy Piyush Verma

2

14th Dec 2018

### MiniICAL Detector with Veto Scintillators



## Flow of the Talk

- Prototyping the ICAL Baseline Electronics
- ICAL DAq Architecture
- RPC-Tray Assembly
- Front-End System
  - Analog Front-End
  - Digital Front-End
- Back-End System
  - Trigger Generation
  - Calibration System
  - Back-end Software
  - Power Supplies
- Results

## Prototyping the INO ICAL Baseline Electronics and Back-End Software

- > The Baseline Electronics for ICAL has been designed and implemented
- It is getting thoroughly tested on real RPC detector stack
- ► The Mini-ICAL is presently running with 10 RPC detectors
- This magnetised 10 layered 2m x 2m RPC stack is the most appropriate detector to test the Baseline Electronics







## Analog Front-End: NINO and Anusparsh-III

#### NINO: Installed in 9 layers

- 8 Channel preamplifier board.
- Common threshold control for all channels.
- Size of Board is 200 mm x 23 mm
- LVDS Outputs
- Power consumption 70 mW/ch

#### Anusparsh-III: Installed in 1 Layer

- 8 Channel preamplifier board
- Size of Board is 200 mm x 45 mm
- LVDS Outputs + 1 Multiplexed Analog output
- Power consumption 32 mW/ch









Mandar Saraf, TIFR

14th Dec 2018

## **RPC-Tray Assembly**



Mandar Saraf, TIFR

14th Dec 2018

## **RPC-Tray Assembly**



Mandar Saraf, TIFR

### The Mini-ICAL Detector



Mandar Saraf, TIFR

### The Mini-ICAL Detector



## The Trigger System for mini-ICAL



### The mini-ICAL Trigger System





## CALIBRATION & AUXILIARY UNIT

Calibrate trigger delay paths for timing data

- Master Time keeper
- Synchronise RTCs across all RPC-DAQs
- Source of all Global services: Global Clock, PPS, Trigger



## Powering up the RPCs and the DAQ

- RPCs are biased to ±4900V using CAEN's SY2527 Multichannel Power Supply System with the 1832 P and N HV modules
- Also 1 layer RPC is being biased with HV module developed by BARC. Eventually all layers would go on these home made modules
- The Front-End electronics is powered by CAEN's EASY 3000 System with 3 Mod. A3025 Power Supply Boards

### Powering up the RPCs and the DAQ











Mandar Saraf, TIFR

DAE-BRNS High Energy Physics Symposium

14th Dec 2018

## System Integration



20

## **Results: Tracks**

#### Online Track Display



## **Results:** Tracks

#### Online Track Display



DAE-BRNS High Energy Physics Symposium

## **Results: Tracks**

#### Online Track Display



#### Results: Bent Tracks with the Magnet on



## Results: Multiplicity & Occupancy



### Results: Efficiency & Multiplicity Spread



![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Picture_0.jpeg)

#### Thank You

On behalf of INO Electronics Team

Mandar Saraf, TIFR

DAE-BRNS High Energy Physics Symposium

14th Dec 2018