

BSM Higgs boson searches at LHC

Arun Nayak
Institute of Physics
Bhubaneswar, India

DAE-BRNS-2018 IIT, Madras

Introduction

- Higgs boson searches beyond the SM: Important aspect of Higgs physics program at LHC
- Complimentary to the SM interpretations/investigation of properties of the observed 125 GeV scalar particle
- BSM searches include:
 - Search for exotic decays not expected within the SM.
 - Searches for more complex Higgs sector
 - ☐ Prediction of additional Higgs bosons from many models beyond SM

Rich program to search for NEW physics in the Higgs sector

Due to time constraint I will discuss results only from a few prominent searches performed using pp collision data collected at $\sqrt{s} = 13 \text{ TeV}$

Higgs boson in MSSM

- Two Higgs doublet => 5 physical bosons
 - Three neutrals: h, H (CP even), A (CP odd)
 - Two charged: H[±]
- Controlled by two parameters at tree level
 - m_A and $tan\beta$

$$\Phi_1 = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \phi_1^+ \\ v_1 + \phi_1^0 \end{array} \right)$$

$$\Phi_2 = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \phi_2^+ \\ v_2 + \phi_2^0 \end{array} \right)$$

$$\tan\beta = \frac{v_2}{v_1}$$
 50 60 100 200 300 400
$$m_{\rm A} \, [{\rm GeV}]$$

$$M_{H^+}^2 = M_A^2 + M_W^2$$

$$M_{h/H}^2 = \frac{1}{2} \left(M_A^2 + M_Z^2 \mp \sqrt{(M_A^2 + M_Z^2)^2 - 4 M_A^2 M_Z^2 cos^2 2\beta} \right)$$

$$\tan\alpha = \frac{-(m_A^2 + m_Z^2) \sin 2\beta}{(m_Z^2 - m_A^2) \cos 2\beta + \sqrt{(m_A^2 + m_Z^2)^2 - 4 m_A^2 m_Z^2 \cos^2 2\beta}}$$
 Mixing angle between h & H

LHCHXSWG-2015-002

Other SUSY parameters are important at higher order corrections

Higgs boson in MSSM

LHCHXSWG-2015-002

 Approximately 30% of h mass due to higher order corrections

$$(\Delta m_h^2)_{1\text{loop}}^{t/\tilde{t}} \approx \frac{3 m_t^4}{2 \pi^2 v^2} \left(\log \frac{m_{\text{SUSY}}^2}{m_t^2} + \frac{X_t^2}{m_{\text{SUSY}}^2} - \frac{X_t^4}{12 m_{\text{SUSY}}^4} \right)$$

$$X_t = A_t - \mu \cot \beta$$

• Due to large m_t , large $m_{t\sim}$, large X_t , and large $tan\beta$

$$M_{H^{+}}^{2} = M_{A}^{2} + M_{W}^{2}$$

$$M_{h/H}^{2} = \frac{1}{2} \left(M_{A}^{2} + M_{Z}^{2} \mp \sqrt{(M_{A}^{2} + M_{Z}^{2})^{2} - 4M_{A}^{2}M_{Z}^{2}cos^{2}2\beta} \right)$$

$$\tan\alpha \; = \; \frac{-(m_A^2 + m_Z^2) \, \sin 2\beta}{(m_Z^2 - m_A^2) \cos 2\beta + \sqrt{\left(m_A^2 + m_Z^2\right)^2 - 4 \, m_A^2 \, m_Z^2 \, \cos^2 2\beta}} \; .$$

Mixing angle between h & H

MSSM Neutral Higgs at LHC

➤ Neutral Higgs production:

Dominant decay mode in MSSM: bb and ττ

Charged Higgs at LHC

> Charged Higgs production and decay:

For $M_{H^+} \leq m_{top}$:

$$pp \to t\bar{t} \to bH^{\pm}\bar{b}W^{\mp}$$
 with $t \to bH^{+}$

Next-to-MSSM Higgs sector

Extend the MSSM Higgs sector by one more singlet field:

- Solves "μ-problem"
- Additional term to m_h^2 at LO
- Adds more degrees of freedom:

5 + 2 = 7 Higgs bosons:

$$h_1, h_2, H_3, A_2, a_1, H^{\pm}$$

6 parameters @ LO: $tan\beta$, λ , κ , A_{κ} , A_{λ} , μ_{eff}

- More complex phenomenology (14 benchmark points in YR-4).
- Higgs bosons with large singlet admixture can become undetectable.

Summary of Run-1 Searches

Searches for heavy Higgs bosons in down-type fermions final states

200

300

 $A/H/h \rightarrow \tau \tau$ (HIG-14-029)

400 500

Searches for *h* → *aa* decays in various final states

- Huge parameter space in MSSM systematically explored, NMSSM exploration ramping up.
- Also more general model independent limits and effective 2HDM(+S) interpretations.

1000

m_₄ [GeV]

100

Run-2 Searches

2HDM / MSSM Searches:

NMSSM-like searches:

MSSM H/A → bb

 $pp \rightarrow \Phi b, \Phi \rightarrow bb, \phi: h, H, A$

Event Selection : Trigger :

>= 2 b-tagged jets, p_T > 100 GeV, $|\Delta\eta|$ < 1.6

Offline:

>= 3 b-tagged jets (Thresholds vary according to analysis)

One of the jet contains a muon in semi-leptonic analysis.

Backgrounds:

Major background : qcd bbbar, Measured from data

Final Discriminant: Invariant mass of two

Invariant mass of the leading b-jets

The natural width of the mass peak for a mass of 600 GeV is found to be <19% of the full width at half maximum of the reconstructed mass distribution

Different shapes of signal and background motivate separation into three (overlapping) categories in

φ → bb Exclusion Limits

JHEP 08 (2018) 113

Upper Limit on pp $\rightarrow \varphi b$, $\varphi \rightarrow bb$ production by fitting observed M₁₂ distribution. Interpretations provided in many MSSM as well as 2HDM scenarios

MSSM Higgs $\rightarrow \tau\tau$

 $pp \rightarrow \phi, \phi \rightarrow \tau\tau$, $\phi: h, H, A$

Flagship analysis for MSSM Higgs search at LHC

- Enhanced coupling
- Better separation of signal from backgrounds compared to bb channel

Event categories exploit topological and kinematic peculiarities of MSSM motivated production

Signal extraction based on

$$m_{\mathrm{T}}^{\mathrm{tot}} = \sqrt{m_{\mathrm{T}}^{2}(p_{\mathrm{T}}^{\tau_{1}}, p_{\mathrm{T}}^{\tau_{2}}) + m_{\mathrm{T}}^{2}(p_{\mathrm{T}}^{\tau_{1}}, p_{\mathrm{T}}^{\mathrm{miss}}) + m_{\mathrm{T}}^{2}(p_{\mathrm{T}}^{\tau_{2}}, p_{\mathrm{T}}^{\mathrm{miss}})},$$

Analysis performed in 4 final states:

 $e\mu$, $e\tau_h$ $\mu\tau_h$, $\tau_h\tau_h$

Other

3.3

Decay mode	Resonance	\mathcal{B} ((%)
Leptonic decays		35.2	
$ au^- ightarrow \mathrm{e}^- \overline{ u}_\mathrm{e} u_ au$			17.8
$ au^- o \mu^- \overline{ u}_\mu u_ au$			17.4
Hadronic decays		64.8	
$ au^- ightarrow ext{h}^- u_ au$			11.5
$ au^- ightarrow ext{h}^- \pi^0 u_ au$	$\rho(770)$		25.9
$ au^- ightarrow ext{h}^- \pi^0 \pi^0 u_ au$	$a_1(1260)$		9.5
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- u_ au$	$a_1(1260)$		9.8
$ au^- ightarrow \mathrm{h}^-\mathrm{h}^+\mathrm{h}^-\pi^0 u_{\scriptscriptstyle T}$			4.8

~90% of all $\tau\tau$ final states contain at least one τ_h

$\phi \rightarrow \tau \tau$ Exclusion Limit

b associated production

gluon fusion

MSSM Interpretation

taneta

ATLAS

 \sqrt{s} = 13 TeV, 36.1 fb⁻¹

Large part of parameter space already excluded $M_A > 1 \text{ TeV}$ for $tan\beta > 20$

50

40

30

20

10

500

1000

— Observed

-- Expected

1500

 m_A [GeV]

-- Expected

1500

 m_A [GeV]

<u>±</u> 1σ

±2σ

hMSSM scenario

1500

2000

m_A (GeV)

Charged Higgs

Search Channels:

• H[±] $\rightarrow \tau \nu$ (Low & High mass) \rightarrow JHEP 09 (2018) 139, CMS-PAS-HIG-18-014

CMS: Reconstruct τv transverse mass in both leptonic and hadronic τ decays

$$m_{\mathrm{T}}(\tau_{\mathrm{h}}/\ell) = \sqrt{2p_{\mathrm{T}}(\tau_{\mathrm{h}}/\ell)p_{\mathrm{T}}^{\mathrm{miss}}(1-\cos\Delta\phi(\vec{p}_{\mathrm{T}}(\tau_{\mathrm{h}}/\ell),\vec{p}_{\mathrm{T}}^{\mathrm{miss}}))}$$

ATLAS: BDT distributions in 5 bins of m_{H+} in $~\tau + \ell$ channel

• H[±] → tb (High mass) _______ JHEP 11 (2018) 085

Lepton(s) + jets final states

Categorize in number of b-Tagged jets

Extract signal from BDT discriminant

H[±] → cs (Low mass)
 JHEP 12 (2015) 1

H[±] → cb (Low mass)
 CMS-HIG-16-030

Reconstruct full tt events with kinematic fit, use invariant mass of two jets assigned to H[±] as the final discriminant

H[±] → WZ (High mass)
 PRL 119 (2017) 141802

VBF H[±] production predicted by Georgi Machacek model Events selected requiring 3 leptons from decay of W and Z bosons

 $m_{T}(WZ)$ used as the final discriminant to extract signal

Charged Higgs Results

 $H^{\pm} \rightarrow tb$ (High mass) (JHEP 11 (2018) 085)

PRL 119 (2017) 141802

m_{H+} [GeV]

500

1000

1500

m(H[±]) [GeV]

600

1000

 $m(H^{\dagger})$ [GeV]

400

Doubly Charged Higgs boson

Higgs Triplet Models:

- Addition of scalar triplet(s)
 - Georgi-Machacek model:
 Add one real and one complex
 SU(2) triplet
- H+ phenomenology different from the doublet models
 - H+WZ couplings at tree level
 - Double-charged Higgs bosons (H++)

- ATLAS considered pair production: pp → H++H--
- CMS considered VBF production: pp → qqH⁺⁺
- Decay pre-dominantly to EWK bosons H^{±±}→W[±]W[±]
- Signal Categories: $2\ell^{ss}$, 3ℓ , 4ℓ
- Additional selections on p_T^{miss}, nJets, b-Jet veto etc..
- Signal Extraction:
 - ATLAS did a rectangular cut optimization using TMVA
 - CMS used simultaneous fit to $(m_{\ell\ell}, m_{jj})$ 2D distribution and m_{jj} in WZ control region

$h(125) \rightarrow aa$

- Constraint on BR(h → BSM) from fits for couplings still allows for up to 20-30% decays into unobserved particles.
- h(125) → aa decay mode possible in NMSSM scenarios, where "a" stands for just a Higgs boson that could be scalar or pseudo-scalar
- Many final states analyzed for varying m_a values, up to $m_a \le m_h/2$

- The decay products of "a" boson boosted for low m_a values:
 - Challenging final states
 - Special care needed to reconstruct and identify leptons
- Results are presented in terms of upper limits on cross section times branching fractions

$h(125) \rightarrow aa \rightarrow 4b$

h(125) production in association with a vector boson, where W/Z decays to leptons

Search mass region: 20 GeV \leq m_a \leq 60 GeV

BDT discriminant to extract signal

Event Categories

Upper limits are obtained on σ x BR as function of mass and lifetime

$h(125) \rightarrow aa \rightarrow bb\mu\mu$

- For m_a ≥10 GeV this means the "a" boson decays preferentially into bb
- However, in models with enhanced lepton couplings such as the Type-III 2HDM, the a → μμ branching ratio can also be relatively large
- Presence of a clean dimuon resonance provides a distinctive signature
 - Used for triggering and precision mass reconstruction
 - Helps to suppress background
- A kinematic-likelihood (KL) fit exploiting the symmetry of H → aa decays is performed
 - Tests the compatibility of an event with the $m_{bb}\approx m_{\mu\mu}$ hypothesis
 - Improve the m_{bbuu} resolution in signal events

Background normalizations are obtained from Control regions and validated in Validation regions

Search mass region: 20 GeV \leq m_a \leq 60 GeV

Upper limits are obtained on σ x BR as function of mass

VBF h(125) \rightarrow aa $\rightarrow \gamma \gamma gg$

- Much larger branching fractions than h

 aa

 4γ,
 assuming same ratio of photon and gluon couplings
 SM h and "a" bosons.
- VBF production mode to suppress overwhelming γγ+multi-jet background

Search mass region: 20 GeV \leq m_a \leq 60 GeV

Upper limits are obtained on σ x BR as function of mass

$h \rightarrow aa \rightarrow 4\mu$

CMS

 $\rightarrow 2a_1) B^2(a_1)$

- Generic search for non-SM decay of Higgs boson to a pair of new light bosons (a), which subsequently decay to boosted pairs of oppositely charged muons.
- Predicted in models like NMSSM, dark SUSY etc..
- Benchmark Scenarios:
 - NMSSM Higgs Sector:
 - Possible Signature at LHC : $h_{1.2} \rightarrow 2a_1 \rightarrow 4\mu$
 - Typical Higgs masses : $90 \le m_{h1} \le 120 135$ GeV
 - Dark Susy: New light dark boson γ_D
 - Possible Signature at LHC:

$$h_1 \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$$

Search assumption

$$0.25 < m_{a1} < 3.55 \text{ GeV}$$

 $(2m_{\mu} \le m_{a1} \le 2m_{\tau})$

Dark SUSY

DAE-BRNS-2018, A Nav

Model independent limits

2.5

3

 $m_{a_{a}}$ [GeV]

$h(125) \rightarrow aa \rightarrow \mu\mu\tau\tau$

The signal combines two decay modes:

h
$$\rightarrow$$
 aa \rightarrow 2 μ 2 τ
h \rightarrow aa \rightarrow 4 τ
(two of the τ s decay to μ s)

Assuming 2HDM-like scenarios

$$\frac{\mathcal{B}(a \to 2\mu)}{\mathcal{B}(a \to 2\tau)} = \frac{m_{\mu}^2 \sqrt{1 - (2m_{\mu}/m_a)^2}}{m_{\tau}^2 \sqrt{1 - (2m_{\tau}/m_a)^2}} \simeq \frac{m_{\mu}^2}{m_{\tau}^2}.$$

 Four different final states are studied, depending on τ decay modes

$$\mu\mu + e\mu$$
, $\mu\mu + e\tau_h$, $\mu\mu + \mu\tau_h$, $\mu\mu + \tau_h\tau_h$

- Signal extracted by unbinned maximum likelihood fit to M(μμ)
- Probed mass region:
 15 GeV ≤ m_a ≤ 62.5 GeV

Result improved (w.r.t 8 TeV) by a factor of ≥ 2

Upper limits are obtained on σ x BR as function of mass of "a" boson

Interpretation in 2HDM+S type models

Events / 5 GeV

$h(125) \rightarrow aa \rightarrow bb\tau\tau$

- Br(aa \rightarrow 2b2 τ) = 10 50% depending on scenarios and parameters
- signature: $1b + 1\ell + 1\tau$ or $1b + 2\ell$
 - 3 different ττ final states: eμ, eτ_h, μτ_h
- 4 m^{vis}_{bπ} categories
- probed mass range: 15<m_a<60 GeV
- Binned maximum likelihood to m^{vis}(ττ)

Interpretation in 2HDM+S type models

DAE-BRNS-2018, A Nayak

LFV: $h \rightarrow e/\mu + \tau$

JHEP 06 (2018) 001

- Forbidden in SM, but allowed in many BSM models
- Search performed in two decay channels:
 h → eτ, μτ
 - 2 tau decay modes: au_h or $au_{\mu/e}$
 - 4 event categories designed to enhance the contribution of different Higgs production mechanisms: 0-jet, 1jet, 2-jets (ggH), and VBF

BDT fit

 $< 1.43 \times 10^{-3}$

 $< 2.26 \times 10^{-3}$

Collinear mass fit as a cross check

 $M_{\rm col}$ fit

 $< 2.05 \times 10^{-3}$

 $< 2.45 \times 10^{-3}$

CMS

DAE-BRNS-2018, A Nayak

Summary

- Rich program to search for new physics in the Higgs sector at LHC
- Both ATLAS and CMS experiments search for non-SM decays of the observed 125 GeV scalar as well as presence of additional Higgs bosons
- Many models such MSSM, NMSSM, See-Saw etc.. predict additional neutral as well as charged Higgs bosons
- Large parameter space of the MSSM benchmark scenarios are already excluded. However, analyses are not yet sensitive to exclude parameter space in NMSSM.
- Results are presented mostly for 13 TeV data collected during 2016.
- Lot of improvements in the analysis search sensitivities compared to Run-1 results.
- ~4 times more data is already collected during run-2 and are being analyzed now
- Looking for more exciting results soon

BACKUP

MSSM Scenarios

Table 1: MSSM benchmark scenarios.

Parameter	$m_{ m h}^{ m max}$	$m_{ m h}^{ m mod+}$	$m_{ m h}^{ m mod-}$	
$m_{\rm A}$	90-1000 GeV	90-1000 GeV	90-1000 GeV	
$\tan \beta$	0.5-60	0.5-60	0.5-60	
$M_{ m SUSY}$	1000 GeV	1000 GeV	1000 GeV	
μ	200 GeV	200 GeV	200 GeV	
M_1	$(5/3) M_2 \tan^2 \theta_W$	$(5/3) M_2 \tan^2 \theta_W$	$(5/3) M_2 \tan^2 \theta_W$	
M_2	200 GeV	200 GeV	200 GeV	
X_t	$2 M_{\rm SUSY}$	$1.5 M_{\rm SUSY}$	$-1.9~M_{ m SUSY}$	
A_b, A_t, A_{τ}	$A_b = A_t = A_{\tau}$	$A_b = A_t = A_{\tau}$	$A_b = A_t = A_{\tau}$	
$m_{\widetilde{\mathbf{g}}}$	1500 GeV	1500 GeV	1500 GeV	
$m_{ ilde{ ilde{l}_3}}$	1000 GeV	1000 GeV	1000 GeV	

Parameter	light-stop	light-stau	τ -phobic	$low-m_H$
$m_{\rm A}$	90-600 GeV	90-1000 GeV	90-1000 GeV	110 GeV
$\tan \beta$	0.7-60	0.5-60	0.9-50	1.5-9.5
$M_{ m SUSY}$	500 GeV	1000 GeV	1500 GeV	1500 GeV
μ	400 GeV	500 GeV	2000 GeV	300-3100 GeV
M_1	340 GeV	$(5/3) M_2 \tan^2 \theta_W$	$(5/3) M_2 \tan^2 \theta_W$	$(5/3) M_2 \tan^2 \theta_W$
M_2	400 GeV	200 GeV	200 GeV	200 GeV
X_t	$2 M_{SUSY}$	$1.6 M_{\rm SUSY}$	$2.45~M_{ m SUSY}$	$2.45 M_{\rm SUSY}$
A_b, A_t, A_τ	$A_b = A_t = A_{\tau}$	$A_b = A_t, A_\tau = 0$	$A_b = A_t = A_{\tau}$	$A_b = A_t = A_{\tau}$
$m_{\widetilde{\mathbf{g}}}$	1500 GeV	1500 GeV	1500 GeV	1500 GeV
$m_{ ilde{l_3}}$	1000 GeV	245 GeV	1000 GeV	1000 GeV

2DHM scenarios

arXiv: 1507:04281

- 1. Type-I Yukawa couplings: $h_1^U = h_1^D = h_1^L = 0$,
- 2. Type-II Yukawa couplings: $h_1^U = h_2^D = h_2^L = 0$.
- 3. Type-X Yukawa couplings: $h_1^U = h_1^D = h_2^L = 0$,
- 4. Type-Y Yukawa couplings: $h_1^U = h_2^D = h_1^L = 0$.

$$\rho_F \propto \kappa_F = \frac{\sqrt{2}}{v} M_F$$

Barger, Hewitt, Philips, PRD41 (1990)

Type	U_R	D_R	L_R	$ ho^U$	$ ho^D$	$ ho^L$
I	+	+	+	$\kappa^U \cot \beta$	$\kappa^D \cot \beta$	$\kappa^L \cot \beta$
II	+	_	_	$\kappa^U \cot eta$	$-\kappa^D \tan \beta$	$-\kappa^L \tan \beta$
III	+	_	+	$\kappa^U \cot eta$	$-\kappa^D \tan \beta$	$\kappa^L\coteta$
IV	+	+	_	$\kappa^U \cot \beta$	$\kappa^D \cot \beta$	$-\kappa^L \tan \beta$

Type III = Type Y = "Flipped"

Type IV = Type X = "Lepton-spec."