XXIII DAE-BRNS High Energy Physics Symposium 2018

Probing new signature using Jet substructure at the LHC

Akanksha Bhardwaj Collaborators : Arindam Das, Partha Konar and Arun Thalapillil

Theoretical Physics Division Physical Research Laboratory

Dec 11, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

akanksha@prl.res.in

What we calculate and What we see at the LHC?

 $h \rightarrow b \bar{b} \; 57\%$, Z and W boson decay almost 70% to hadronic channel.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Boosted topology

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

How to look for Jet Substructure

A possible approch for reducing the QCD background is to identify the two prongs of the heavy particle decay, and put a cut on thier momentum fraction.

Selection of the symmetric splitting and identify two legs.

Identifying the 2 or 3 prong nature of the Fat-jet

N-subjettiness

$$\tau_{N}^{\beta} = \frac{1}{\mathcal{N}_{0}} \sum_{i} p_{i,T} \min \left\{ \Delta R_{i1}^{\beta}, \Delta R_{i2}^{\beta}, \cdots, \Delta R_{iN}^{\beta} \right\}.$$

i runs over the constituent particles in a given jet. Where, $\mathcal{N}_0 = \sum_i p_{i,T} R_0$ is the normalizing factor, R_0 is the jet radius parameter.

N-subjettiness Ratio

- Quantify how original jet seem to be composed of N daughter subjets
- $\tau_N \sim 0 \Rightarrow$ Original jet consist of N or fewer sub-jets
- $\tau_N >> 0 \Rightarrow$ Large fraction of energy diluted from candidate N sub-jets
- A good discriminant the ratios of adjacent N-subjettiness values

⁰J.Thaler and K. Van Tilburg [JHEP03(2011)015] < □ → < ♂ → < ≧ → < ≧ → ⊂ ≧ → ○ < ♡

Inverse SeeSaw

The relevant part of the Lagrangian can be written as

$$\mathcal{L} \supset -Y_D^{lphaeta}\overline{\ell_L^{lpha}}HN_R^{eta} - M^{lphaeta}\overline{S_L^{lpha}}N_R^{eta} - rac{1}{2}\mu_{lphaeta}\overline{S_L^{lpha}}S_L^{eta^{eta}} + \mathrm{H.c.}$$

After the electroweak symmetry breaking we obtain the neutrino mass matrix as

$$M_{
u} = egin{pmatrix} 0 & M_D & 0 \ M_D^{\mathsf{T}} & 0 & M^{\mathsf{T}} \ 0 & M & \mu \end{pmatrix}.$$

we obtain the inverse seesaw formula for the light neutrinos as

$$M_{\nu} \simeq M_D M^{-1} \, \mu \, M^{-1^T} M_D^T.$$

Inverse SeeSaw : Two different cases

Single flavor (SF)

- One heavy Dirac pair is at the electroweak scale, while other heavy pairs are assumed to be beyond the kinematic reach of the LHC.
- The lightest heavy Dirac neutrino mass eigenstates dominantly couple to a single lepton flavor Assume μ

Inverse SeeSaw : Two different cases

Single flavor (SF)

- One heavy Dirac pair is at the electroweak scale, while other heavy pairs are assumed to be beyond the kinematic reach of the LHC.
- The lightest heavy Dirac neutrino mass eigenstates dominantly couple to a single lepton flavor Assume μ

Flavor diagonal (FD)

- Two of the heavy Dirac neutrino pairs are degenerate with a equal mass m_N .
- Assuming that one pair dominantly couples to electrons, and the other one to muons with equal strength.

Heavy Neutrino at LHC

Total production cross-section and branching ratios of heavy Majorana neutrino as a function of its mass at the LHC with $\sqrt{s} = 13$ TeV and normalised by the $|V_{\mu N}|^2$.

$$BR(N \rightarrow IW) : BR(N \rightarrow : \nu Z) : BR(N \rightarrow \nu h) \simeq 2 : 1 : 1$$

Conventional Experimental searches

⁰CMS8: 1501.05566, 1603.02248 ATLAS8: 1506.06020<♂> <≧> <≧> <≧> <≧ < ○ < <

Fatjet from Heavy Neutrino (OSDL)

$$\begin{array}{l} pp \rightarrow l_{1}^{+}N, N \rightarrow l_{2}^{-}W^{+}, W^{+} \rightarrow J_{W} \\ pp \rightarrow l_{1}^{-}\overline{N}, \overline{N} \rightarrow l_{2}^{+}W^{-}, W^{-} \rightarrow J_{W} \end{array}$$

(日)

э

Fatjet signature will be seen if W^{\pm} is sufficiently boosted.

Utilising Jetsubstructure for W-tagging

Normalised distribution invariant mass $M_{J_0}(left)$ and N-subjettiness ratio τ_{21} (*right*) of the leading fat-jet after the application of the basic selection cuts; including $p_T^{J_0} > 100 \text{GeV}$..

・ロト ・ 四ト ・ ヨト ・ ヨ

Utilising Jetsubstructure for W-tagging

Normalised distribution as a function of observables after the application of the basic selection cuts; including $p_T^{J_0} > 100 GeV$.

Results and Discussion (OSDL)

Exclusion limit in terms of heavy neutrino mass M_N and $|V_{\mu N}|^2$ for an integrated luminosity of 3000 fb^{-1} at the 13 TeV LHC with other available limits.

⁰AB, Arindam Das, Partha Konar and Arun Thalapillil, arXiv[1801.00797] = 🕤

Conclusion

- Jet Substructure technique: one of the most efficient and popular discovery tool in the search of new physics signatures at the LHC.
- As the available center-of-mass energy at the LHC increases, more and more boosted particles, understanding of the physics in this boosted regime is extremely crucial.
- One of the most active field of research in particle physics phenomenology !

Conclusion

- Jet Substructure technique: one of the most efficient and popular discovery tool in the search of new physics signatures at the LHC.
- As the available center-of-mass energy at the LHC increases, more and more boosted particles, understanding of the physics in this boosted regime is extremely crucial.
- One of the most active field of research in particle physics phenomenology !

THANK YOU

Cut flow for OSDL + a fatjet

Cut	Signal	Background					
	$M_N = 400 ({\rm GeV})$	$Z^{l} + j$	$t\bar{t} + j$	$W^{l}W^{l} + j$	$Z^l W^h + j$	$Z W^l + j$	$Z^l W^l W^h + j$
Pre-selection + $\mu^+\mu^- + 1J$	621.69 [100%]	5.1×10^7 [100%]	5.6×10^{6} [100%]	2.2×10^{5} [100%]	5.7×10^5 [100%]	2.9×10^4 [100%]	120.8 [100%]
$p_T(l_1) > 100 \text{ GeV} +$	532.1	8.9×10^6	6×10^5	3.6×10^4	10.2×10^4	5556	33.64
$p_T(l_2) > 60 \text{ GeV}$	[85.60%]	[16.88%]	[10.68%]	[16.86%]	[18.27%]	[19.48%]	[27.85%]
$M_{\mu^+\mu^-}>200\;{\rm GeV}$	446.4	583.7	4.2×10^5	2.2×10^4	9.4	1471.2	10.42
	[71.82%]	[0.0010%]	[7.37%]	[9.87%]	[0.0016%]	[5.15%]	[8.62%]
b-veto	414.6	530.6	14.8×10^4	2.0×10^4	8.54	1384.5	9.15
	[66.71%]	$[9.9\times 10^{-4}\%]$	[2.67%]	[9.52%]	[0.0014%]	[4.85%]	[7.58%]
MET < 60	369.7	371.4	$5.4 imes 10^4$	8104	6.0	751.41	4.04
	[59.49%]	$[6.9 \times 10^{-4}\%]$	[0.982%]	[3.70%]	$[10.3 \times 10^{-4}\%]$	[2.63%]	[3.35%]
$p_T^{J_0} > 150 \text{ GeV}$	240.3	265.32	19606	4032	4.27	419.9	2.75
	[38.65%]	$[4.9\times 10^{-4}\%]$	[0.351%]	[1.842%]	$[7.3 \times 10^{-4}\%]$	[1.47%]	[2.28%]
$M^{J_0} > 50 \text{ GeV}$	171.2	42.4	3560	887.4	0.68	105.7	1.48
	[27.54%]	$[7 \times 10^{-5}\%]$	[0.063%]	[0.40%]	$[1.2 \times 10^{-4}\%]$	[0.37%]	[1.233%]
$\tau_{21} < 0.4$	152.3	21.18	2062	433.8	0.34	71.03	1.13
	[24.50%]	$[3.9 \times 10^{-5}\%]$	[0.036%]	[0.198%]	$[5.8 \times 10^{-5}\%]$	[0.24%]	[0.94%]

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @