





# XXIII DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2018, IIT, Madras

10-14 Dec 2018

A. Carvalho<sup>1</sup>, J. Komaragiri<sup>2</sup>, D. Majumder<sup>3</sup>,
L. Panwar<sup>2</sup>

- 1. INFN, Padova, Italy
- 2. Indian Institute of Science, India
- 3. University of Kansas, US

#### Introduction

- 1. It is a projection analysis in which:
  - o Work on warped extra dimension BSM model
  - $\circ$  Study resonant production of HH in 4b final state (
    - High BR but QCD contribution is huge
    - Need proper background modeling
  - Project the signal sensitivity with CMS phase-2 detector, assuming the signal cross-section 1 fb with  $\sqrt{s}$  = 14 TeV
- 2. Analysis has been approved by UPSG group and PAS is public now.
- 3. Reference:
  - o <u>arXiv 1404.0102</u>
- 4. Documentation
  - o <u>FTR-18-003</u>



#### **About BSM Model**

- Warped Extra Dimension model which predicts new state spin-2 (Graviton)
  - Two Scenarios: RS1 and RS\_bulk.
  - Working with RS\_Bulk scenario.
  - Solves hierarchy problem of the SM



#### **About BSM Model**

- Warped Extra Dimension model which predicts new state spin-2 (Graviton)
  - Two Scenarios: RS1 and RS\_bulk.
  - Working with RS\_Bulk scenario.
  - Solves hierarchy problem of the SM
- Resonances may not couple to the SM quarks or gluons
  - Negligible s-channel production rate.
  - VBF production might dominate.







arXiv:1404.0102 (Alexandra Carvalho)

#### **About BSM Model**

- Warped Extra Dimension model which predicts new state spin-2 (Graviton)
  - Two Scenarios: RS1 and RS\_bulk.
  - Working with RS\_Bulk scenario.
  - Solves hierarchy problem of the SM
- Resonances may not couple to the SM quarks or gluons
  - Negligible s-channel production rate.
  - VBF production might dominate.









#### Motivation for searches at HL-LHC

- VBF production accessible at HL-LHC with 3 ab<sup>-1</sup> data.
- This is the first look at VBF  $X \rightarrow HH$  production at CMS
- With CMS Phase-2 detector it will get benefit with
  - Extended tracker coverage⇒ for boosted H→ bb using subjet b-tagging
  - HGCAL ⇒ For VBF Jet identification

arXiv:1404.0102 (Alexandra Carvalho)

Final state objects: J1, J2, j1, j2



- . Two fatjets J1, J2 coming from boosted Higgs.
  - AK8 PUPPI Jets (anti- $k_{\tau}$ , R=0.8)
  - $p_{\tau} > 300 \text{ GeV and } |\eta| < 3$
  - Soft-drop mass window:
    - 90-140 GeV for first two leading
    - Optimized by looking at the S/√B
  - N-subjettiness for Higgs-tagging:  $\tau_2/\tau_1 < 0.6$
  - Subjet b-tagging:
    - DeepCSV medium working points (mistag 1%)
    - Optimized by looking at signal significance

#### Final state objects: J1, J2, j1, j2



- I. Two fatjets J1, J2 coming from boosted Higgs.
  - $\sim$  AK8 PUPPI Jets (anti- $k_{\tau}$ , R=0.8)
  - $\circ$  p<sub>T</sub> > 300 GeV and  $|\eta| < 3$
  - o Soft-drop mass window:
    - 90-140 GeV for first two leading
    - Optimized by looking at the S/√B
  - N-subjettiness for Higgs-tagging:  $\tau_2/\tau_1 < 0.6$
  - Subjet b-tagging:
    - DeepCSV medium working points (mistag 1%)
    - Optimized by looking at signal significance

#### 2. VBF jets j1 and j2

- $\circ$  p<sub>T</sub> > 50 GeV and  $|\eta| < 5$
- $\circ$  Δη > 5 (large η-separation)
- $\circ \eta_{ii} * \eta_{i2} < 0$  (opposite direction)
- $\circ$   $M_{i1i2} > 300 \text{ GeV}$  (large reconstructed mass)
- o dR (Higgs jet, AK4 jet) > 1.2
  - To not count Higgs jets as VBF jets.

#### Final state objects: J1, J2, j1, j2



- 1. Two fatjets J1, J2 coming from boosted Higgs.
  - AK8 PUPPI Jets (anti- $k_{\tau}$ , R=0.8)
  - $\circ$  p<sub>T</sub> > 300 GeV and  $|\eta| < 3$
  - Soft-drop mass window:
    - 90-140 GeV for first two leading
    - Optimized by looking at the S/√B
  - N-subjettiness for Higgs-tagging:  $\tau_2/\tau_1 < 0.6$
  - Subjet b-tagging:
    - DeepCSV medium working points (mistag 1%)
    - Optimized by looking at signal significance

- 2. VBF jets j1 and j2
  - $\circ$  p<sub>T</sub> > 50 GeV and  $|\eta| < 5$
  - $\circ$  Δη > 5 (large η-separation)
  - $\circ \eta_{ii} * \eta_{i2} < 0$  (opposite direction)
  - $\circ$   $M_{i1i2} \stackrel{>}{>} 300 \text{ GeV}$  (large reconstructed mass)
  - o dR (Higgs jet, AK4 jet) > 1.2
    - To not count Higgs jets as VBF jets.

#### Final state objects: J1, J2, j1, j2



- 3. Events categorized based on number of b-tagged subjets:
  - o 3b and 4b

### Background estimation

- subjet b-tagging selection kills almost all the background events.
- Model the background by reweighting
   M<sub>JJ</sub>-distribution with the subject b-tagging efficiencies.
- Reweight QCD events which pass the H-jet selection excluding subjet b-tagging cut.

b\_eff. DeepCSV medium

light\_eff. DeepCSV medium





#### Note:

- DeepCSV loose mappings are in backup
- Eff = events passing b-tag selection/ events before b-tag cuts (within particular  $p_{\tau}$  and eta range)

### Background estimation

- subjet b-tagging selection kills almost all the background events.
- Model the background by reweighting
   M<sub>JJ</sub>-distribution with the subject b-tagging efficiencies.
- Reweight QCD events which pass the H-jet selection excluding subjet b-tagging cut.

#### b\_eff. DeepCSV medium



light\_eff. DeepCSV medium



### M<sub>II</sub>-distribution

- Signal events:
  - passing all the event selection cuts.
- Background events:
  - All event selection cuts excluding subjet b-tagging cut,
  - For full M<sub>J1J2</sub>-distribution, events are reweighted as explained
- QCD is scaled by factor 0.7 (from Run-2

#### Data/MC comparison)



#### Note:

- DeepCSV loose mappings are in backup
- Eff = events passing b-tag selection/ events before b-tag cuts (within particular  $p_{\tau}$  and eta range)

| Soft-drop ma           | $S/\sqrt{B}$             |              |
|------------------------|--------------------------|--------------|
| Leading- $p_T$ AK8 jet | 2nd- $p_{\rm T}$ AK8 jet | $S/\sqrt{D}$ |
| 80–160                 | 60–140                   | 2.06         |
| 80-160                 | 80–160                   | 3.12         |
| 60-140                 | 60–140                   | 2.73         |
| 90-140                 | 90–140                   | 3.34         |
| 90–130                 | 90–130                   | 3.25         |

- Compare, the S/√B with different mass cuts for boosted H-jet
- Get high significance with 90-140 GeV mass window.

| Soft-drop ma           | $S/\sqrt{B}$             |        |
|------------------------|--------------------------|--------|
| Leading- $p_T$ AK8 jet | 2nd- $p_{\rm T}$ AK8 jet | 3/ V B |
| 80–160                 | 60–140                   | 2.06   |
| 80-160                 | 80–160                   | 3.12   |
| 60–140                 | 60–140                   | 2.73   |
| 90–140                 | 90-140                   | 3.34   |
| 90–130                 | 90–130                   | 3.25   |

- Compare, the S/√B with different mass cuts for boosted H-jet
- Get high significance with 90-140
   GeV mass window.

| Soft-drop ma           | $S/\sqrt{B}$             |              |
|------------------------|--------------------------|--------------|
| Leading- $p_T$ AK8 jet | 2nd- $p_{\rm T}$ AK8 jet | $S/\sqrt{D}$ |
| 80-160                 | 60–140                   | 2.06         |
| 80-160                 | 80–160                   | 3.12         |
| 60-140                 | 60–140                   | 2.73         |
| 90-140                 | 90–140                   | 3.34         |
| 90–130                 | 90–130                   | 3.25         |
|                        |                          | 197          |

- Compare, the S/√B with different mass cuts for boosted H-jet
   Cot high significance with 90,140.
- Get high significance with 90-140
   GeV mass window.

### Subjet b-tagging optimization

- We study two scenarios:
  - DeepCSV medium for 3b and 4b combined categories
  - DeepCSV loose for 3b and 4b combined categories
- Study the signal significance (with systematics uncertainty finalized for YR)





Note: systematics are in the backup

| Soft-drop ma           | $S/\sqrt{B}$             |        |
|------------------------|--------------------------|--------|
| Leading- $p_T$ AK8 jet | 2nd- $p_{\rm T}$ AK8 jet | 3/ V B |
| 80-160                 | 60–140                   | 2.06   |
| 80-160                 | 80–160                   | 3.12   |
| 60-140                 | 60–140                   | 2.73   |
| 90-140                 | 90–140                   | 3.34   |
| 90–130                 | 90–130                   | 3.25   |
|                        |                          | iv .   |

- Compare, the  $S/\sqrt{B}$  with different mass cuts for boosted H-jet
- Get high significance with 90-140 GeV mass window.

### Subjet b-tagging optimization

- We study two scenarios:
  - DeepCSV medium for 3b and 4b combined categories
  - DeepCSV loose for 3b and 4b combined categories
- Study the signal significance (with systematics



Note: systematics are in the backup

#### Results: Efficiencies and significance

- Results are public only for 200PU case since 0PU is not a realistic scenario.
- Yields are from  $M_{JJ}$  distribution. (only for 200 PU)

| Process                        | 3b category   |                      | rocess 3b category 4b of |                      | category |
|--------------------------------|---------------|----------------------|--------------------------|----------------------|----------|
|                                | <b>Events</b> | Efficiency (%)       | Events                   | Efficiency (%)       |          |
| Multijets                      | 4755          | $1.6 \times 10^{-3}$ | 438                      | $1.5 \times 10^{-4}$ |          |
| BG ( $m_X = 1500 \text{GeV}$ ) | 326           | 11                   | 95.2                     | 3.2                  |          |
| BG ( $m_X = 2000 \text{GeV}$ ) | 316           | 11                   | 81.2                     | 2.7                  |          |
| BG ( $m_X = 3000 \text{GeV}$ ) | 231           | 7.7                  | 41.4                     | 1.4                  |          |

### Results: Efficiencies and significance

- Results are public only for 200PU case since 0PU is not a realistic scenario.
- Yields are from M<sub>II</sub> distribution. (only for 200 PU)

| Process                        | 3b category |                      | 4b category |                      |
|--------------------------------|-------------|----------------------|-------------|----------------------|
|                                | Events      | Efficiency (%)       | Events      | Efficiency (%)       |
| Multijets                      | 4755        | $1.6 \times 10^{-3}$ | 438         | $1.5 \times 10^{-4}$ |
| BG ( $m_X = 1500 \text{GeV}$ ) | 326         | 11                   | 95.2        | 3.2                  |
| BG ( $m_X = 2000 \text{GeV}$ ) | 316         | 11                   | 81.2        | 2.7                  |
| BG ( $m_X = 3000 \text{GeV}$ ) | 231         | 7.7                  | 41.4        | 1.4                  |





#### Results: Efficiencies and significance

Results are public only for 200PU case since 0PU is not a realistic scenario.

• Yields are from  $M_{JJ}$  distribution. (only for 200 PU)

| Process                        | 3b category |                      | 4b category |                      |
|--------------------------------|-------------|----------------------|-------------|----------------------|
|                                | Events      | Efficiency (%)       | Events      | Efficiency (%)       |
| Multijets                      | 4755        | $1.6 \times 10^{-3}$ | 438         | $1.5 \times 10^{-4}$ |
| BG ( $m_X = 1500 \text{GeV}$ ) | 326         | 11                   | 95.2        | 3.2                  |
| BG ( $m_X = 2000 \text{GeV}$ ) | 316         | 11                   | 81.2        | 2.7                  |
| BG ( $m_X = 3000 \text{GeV}$ ) | 231         | 7.7                  | 41.4        | 1.4                  |







- we get high expected significance for higher masses with this analysis strategy.
- Indicates that these searches are good to study with HL-LHC data to probe the new physics as it answers the questions where SM fails.

### Summary and plans

- The complete projection study for the searches of heavy resonances in VBF production mode is presented.
- These searches also get benefit from new CMS detector design.
- Also, it is expected that future advances in the event reconstruction and physics object identification techniques, with the Phase-2 CMS detector design, will help to further improve these projections.
- We plan to extend these searches for wide resonances ( couldn't study because of production issue of wide samples).

### Summary and plans

- The complete projection study for the searches of heavy resonances in VBF production mode is presented.
- These searches also get benefit from new CMS detector design.
- Also, it is expected that future advances in the event reconstruction and physics object identification techniques, with the Phase-2 CMS detector design, will help to further improve these projections.
- We plan to extend these searches for wide resonances ( couldn't study because of production issue of wide samples).

#### arXiv:1404.0102 (Alexandra Carvalho)



- Why large widths?
  - For large couplings the widths of the resonances increase.
  - A 30% width for k~ 2 is quite feasible for a bulk graviton.

### Summary and plans

- The complete projection study for the searches of heavy resonances in VBF production mode is presented.
- These searches also get benefit from new CMS detector design.
- Also, it is expected that future advances in the event reconstruction and physics object identification techniques, with the Phase-2 CMS detector design, will help to further improve these projections.
- We plan to extend these searches for wide resonances ( couldn't study because of production issue of wide samples).

#### arXiv:1404.0102 (Alexandra Carvalho)



- Why large widths?
  - For large couplings the widths of the resonances increase.
  - A 30% width for k~ 2 is quite feasible for a bulk graviton.

Also working on the non-resonant HH→ 4b boosted for YR. Summary on the next slides. PAS = FTR-18-019 (Approved)

### Analysis strategy for boosted non-res HH→ 4b

- Contributing in the boosted part of non-resonant production of HH $\rightarrow$  4b (12 BSM node + SM node) for YR
- Analysis strategy is as same as FTR-18-003 (public) analysis:
  - For public analysis, background samples were used to model the background for heavy (> 1 TeV)
    resonances.
  - $\circ$  To model the background in the lower mass region (M<sub>JJ</sub> < 1 TeV), used available Delphes QCD b-enriched samples, combine it with FullSim after a dedicated partonic study for M<sub>qq</sub> distribution
  - Get improvement in background modelling.

### Analysis strategy for boosted non-res HH→ 4b

- Contributing in the boosted part of non-resonant production of HH $\rightarrow$  4b (12 BSM node + SM node) for YR
- Analysis strategy is as same as FTR-18-003 (public) analysis:
  - For public analysis, background samples were used to model the background for heavy (> 1 TeV)
    resonances.
  - $\circ$  To model the background in the lower mass region (M<sub>JJ</sub> < 1 TeV), used available Delphes QCD b-enriched samples, combine it with FullSim after a dedicated partonic study for M<sub>qq</sub> distribution
  - Get improvement in background modelling.





### 13 BSM+SM benchmarks and upper limits

We use reweighting method for BSM node -2 shape to mimic like other benchmark shapes.





## Backup

### DeepCSV loose mappings and systematic uncertainties

b\_eff. DeepCSV loose



light\_eff. DeepCSV loose



c\_eff. DeepCSV loose



| Source                          | Value | Obtained from             |
|---------------------------------|-------|---------------------------|
| H jet mass scale and resolution | 1     | B2G-16-026, scaled by 0.5 |
| H jet $\tau_{21}$ selection     | 13%   | B2G-16-026, scaled by 0.5 |
| H-tagging correction factor     | 3.5%  | B2G-16-026, scaled by 0.5 |
| Pileup modelling                | 1     | B2G-16-026, scaled by 0.5 |
| PDF and scales                  | 1     | B2G-16-026, scaled by 0.5 |
| Luminosity                      | 1.5%  | UPGAnalysisSystematics    |
| Jet energy scale                | 1%    | UPGAnalysisSystematics    |
| b tagging                       | 1%    | UPGAnalysisSystematics    |

### 13 BSM+SM benchmarks and upper limits

We use reweighting method for BSM node -2 shape to mimic like other benchmark shapes.

