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Introduction



su(3): a toy example

I The Lie algebra of su(3) can be decomposed as

su(3) = H⊕R+ ⊕R− ,

where H is the Cartan sub-algebra; R+ = (e1, e2, e3) are the
positive roots; R− = (−e1,−e2,−e3) = −R+ are the
negative roots.(e1, e2) are simple roots.

I The Cartan matrix which is the matrix of inner proucts of the

simple roots is

(
2 −1
−1 2

)
.

I The Weyl group, W, is generated by elementary reflections of
the simple roots. It is isomorphic to S3.

I The Weyl vector, ρ, is defined as the half the sum of all
positive roots. One has ρ = e3 for su(3).



Weyl group and chamber for su(3)
The roots can be shown as as vectors in a two-dimensional

Euclidean space as su(3) is a rank-two Lie algebra.
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The Weyl denominator formula

I Recall the denominator of the character formula

Σ ≡
∑
w∈W

(−1)w exp[w(ρ)]

I For su(3), this reads

Σ = ee3 − ee2 + e−e1 − e−e3 + e−e2 − ee1

Writing x = e−e1 and y = e−e2 and xy = e−e3 , we get

Σ = (xy)−1−x−1+x−xy+y−y−1 =
(1− x)(1− y)(1− xy)

xy

Note that the appearance of a product running over
positive/negative roots.



The Weyl denominator formula

I The appearance of the product is a generic feature of Lie
algebras.

I Let

Π =
∏
α∈R+

(
1− exp [−α]

)mult(α)
,

where we allow for roots with multiplicity unlike su(3) where
all roots appear with multiplicity one.

I Re-defining Σ by multiplying by e−ρ, we write

Σ =
∑
w∈W

(−1)w exp[w(ρ)− ρ]

I One then has the identity: Σ = Π



Lie Algebras – a historical perspective

I The classification of semi-simple Lie algebras was completed
by Cartan and the fall into four infinite series (An,Bn,Cn,Dn)
and the exceptional ones: E6,E7,E8, F4 and G2.

I The first generalization due to Kac and Moody (KM) can be
understood from the Cartan matrix (the matrix of inner
products between the simple roots). The Cartan matrix of the
above series is positive definite. If we permit zero eigenvalues,
we are lead to the affine Kac-Moody Lie algebras. The Dynkin
diagrams are obtained by adding an extra node the one’s
constructed by Cartan.

I If we complete relax the condition, i.e., permit negative
eigenvalues, we get Kac-Moody Lie algebras. These are not
well understood. Given such a Cartan matrix, we do no a
priori know the multiplicity of roots.

I Borcherds carried out a generalization that enables him to
obtain the multiplicities for a new class of Lie algebras – the
exceptional BKM Lie algebras.



The models of interest – CHL orbifolds

I This talk will show the appearance of BKM Lie Algebras,
some new, from counting BPS states in string theory.

I We will focus on a family of N = 4 supersymmetric string
theories in d = 4, the CHL models, that arise as asymmetric
ZN orbifolds of the heterotic string on T 6

I The vector multiplet moduli space is given by

(λ,M) ∈
(

Γ1(N)
∖SL(2)

U(1)

)
×
(
SO(6, p;Z)

∖ SO(6, p)

SO(6)× SO(p)

)
,

where p is determined from the orbifold action.

I SO(6, p;Z) is the T-duality symmetry group and the S-duality
group Γ1(N) ⊂ PSL(2,Z) given by

Γ1(N) =

{(
a b
c d

) ∣∣∣∣ c = 0 mod N, a = d = 1 mod N

}



The models of interest – CHL orbifolds

I The electric and magnetic charges, (qe ,qm) transform as
(p + 6)-dimensional vectors under the T -duality group.

I The quantization of the charges in terms of T -duality
invariants is such that

N q2e
2 ∈ Z , qe · qm ∈ Z , q2m

2 ∈ Z .

We will indicate these integers, respectively, by (n, `,m).

I The three invariants transform as a triplet under PSL(2,Z).

I For these models, one has 1
2q

2
e ≥ − 1

N and 1
2q

2
m ≥ −1.

I For 1
2 -BPS states one has qm ∝ qe and hence 1

4 -BPS states
are necessarily dyonic while states carrying only electric charge
are necessarily 1

2 -BPS states.



Generating functions from counting

I Let d(n) denote the microscopic degeneracy of electrically
charged 1

2 -BPS states with charge q2e/2 = n/N. Let

16

g(τ/N)
=

∞∑
n=−1

d(n) qn/N ,

where q = exp(2πiτ). g(τ) is a modular form of a level N
sub-group of PSL(2,Z)

I Similarly, let D(n, `,m) denote the microscopic degeneracy of
dyonic 1

4 -BPS states with charges (n, `,m). Let

64

Φ(Z)
=
∑

(n,`,m)

D(n, `,m) qn/N r `sm ,

where Z = ( τ z
z σ ), r = exp(2πiz) and s = exp(2πiσ).

Φ(N)(Z) turn out to be a genus-two Siegel modular forms.



Walls of Marginal Stability N = 4 d = 4 string theory

I In N = 4 d = 4 string theory, 1
4 -BPS states can decay into

two 1
2 -BPS states as one moves across a wall.

I Let λ denote the complex modulus for the heterotic
dilaton-axion field.

I These walls are circular arcs in the upper half-plane given by[
Re(λ)− ad+bc

2ac

]2
+
[
Im(λ) + E

2ac

]2
= 1+E2

4a2c2
,
(
a b
c d

)
∈ PSL(2,Z)

where E is a real function of all other moduli M.

I The arcs intersect the real λ axis at b
a and d

c for any E .

I When E = 0, the arcs are semi-circles centred on the real
λ-axis with radius 1

2ac .

I When either a = 0 or c = 0, the circles become straight lines
perpendicular to the real axis for E = 0.



An example: Heterotic string compactified on T 6

F1 = −1
0 ,
(
0
1 ,

1
1

)
, 10

−1
0

1
0

0
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Counting BPS states: Heterotic string on T 6

I For the heterotic string on T 6, the generating function of
(electrically charged) 1

2 -BPS states is

1

η(τ)24
=
∑
n

d(n) qn

I Dijkgraaf-Verlinde2 proposed that the degeneracy of 1
4 -BPS

states is generated by a weight ten genus-two Siegel modular
form, Φ10(Z). One has

1

Φ10(Z)
=

∑
(n,`,m)>0

d(n, `,m) qnr `sm

where Z = ( τ z
z τ ′ ) ∈ H2 and (n, `,m) = (12q

2
e ,qe · qm, 12q

2
m).

I The square root of Φ10(Z) appears as the denominator
formula for a Borcherds-Kac-Moody (BKM) Lie superalgebra.



Walls of the Weyl chamber
Cheng and Verlinde showed that the walls of the Weyl chamber of
this BKM Lie superalgebra are mapped to the walls of marginal
stablity of 1

4 -BPS dyons! An algebra of BPS states?
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Kac-Moody Lie algebras

I The generators of a Lie algebra, L, can be decomposed as:

L = H⊕R+ ⊕R− ,

H : the Cartan sub-algebra and R± : the positive/negative
roots.

I The simple roots eαi (i = 1, 2, . . . , r) provide a basis for R+.

I The Lie algebra in the Chevalley basis is

[hαi , hαj ] = 0 , [hαi , eαj ] = aji eαi , [eαi , e−αi ] = hαi ,

where A = (aij) is the Cartan matrix of the Lie algebra.

I The elements of R+ are generated by multiple commutators
of the simple roots subject to the Serre relations:

(1−aij ) times︷ ︸︸ ︷
[eαi , [eαi , · · · , [eαi , eαj ] · · · ]] = 0 for all i 6= j .



Borcherds-Kac-Moody Lie algebras



Cartan Matrices and the Weyl group

I Cartan matrices are (i) typically symmetric, (ii) with 2 on the
diagonals and (iii) negative/zero entries for the off-diagonal
terms such that aij = 0 implies aji = 0.

I The Cartan matrix can be obtained as an inner product on the

simple roots αi via aij =
2(αi ,αj )
(αj ,αj )

.

I Given a simple root αi (eαi ) and β (eβ) any root, the Weyl
reflection wi is defined as

wi (β) := β − 2
(β, αi )

(αi , αi )
αi ∈ R+ ∪R− .

wi (αi ) = −αi ∈ R−.

I The Weyl group, W , of a Lie algebra is defined to be the
group generated by all Weyl reflections.

W = 〈w1,w2, . . . ,wr 〉 .



The Weyl-Kac Denominator Formula

I The Weyl vector ρ has the property that (ρ, αi ) = 1
2(αi , αi )

for all simple roots. Check for su(3)

I It is easy to see that (wi (ρ)− ρ) = −αi ∈ R−. More
generally, for any w ∈W , one has wi (ρ)− ρ) ∈ R−.

I The Weyl-Kac Denominator formula is given by (R− might
include imaginary roots)∑

w∈W
det(w) ew(ρ) = eρ

∏
α∈R−

(1− eα)mult(α)

I The LHS knows about the simple roots as they generate the
Weyl group.

I The RHS provides details of the space of all roots. However,
in general, it is hard to determine the multiplicities of roots.

I For affine KM algebras, the answer is known by connecting
the denominator formula to Jacobi forms. [MacDonald]



Borcherds-Kac-Moody Lie algebras

I Borcherds addressed this multiplicity problem by adding
imaginary simple roots to KM algebras. Imaginary roots have
norm ≤ 0.

I The diagonal elements in the (extended) Cartan matrix now
have non-positive entries.

I The denominator formula gets modified leading to the
Weyl-Kac-Borcherds denominator formula

∆ =
∑
w∈W

det(w)w
( ∑
α∈R im

− ∪0

ε(α)eρ+α
)

= eρ
∏
α∈R−

(1−eα)mult(α)

I Borcherds adds imaginary simple roots such that the above
sum/product becomes a suitable modular form, ∆, (the
automorphic correction).

I Such modular forms admit product formulae (”Borcherd
products”) leading to an explicit determination of root
multiplicities.



A family of examples:

I Consider the rank-three KM Lie algebra with Cartan matrix

A(1) =

 2 −2 −2
−2 2 −2
−2 −2 2

 .

I The Siegel modular form ∆5(Z) provides an automorphic
correction of the above KM Lie algebra. [Gritsenko-Nikulin]

I The multiplicities of imaginary simple roots are easily
determined by the zeroth Fourier-Jacobi coefficient of ∆5(Z).

I ∆5(Z) is the square-root of the generating function of 1
4 BPS

states in the heterotic string compactified on T 6.



Walls of Marginal Stability in CHL models



CHL orbifolds of heterotic string on T 6

I There exist a family of ZN (N = 1, 2, . . . , 8) asymmetric
(CHL) orbifolds of the heterotic string compactified on the
six-torus that preserve N = 4 supersymmetry.

I The generating function of 1
2 -BPS states is given by a

multiplicative eta product. [SG-Gopalakrishna]

I The electric charges are quantised such that N
2 q

2
e ∈ Z.

I The generating function of 1
4 -BPS states is given by a Siegel

modular form of the level N sub-group of Sp(2,Z). One has

1

Φ
(N)
k (Z)

=
∑

(n,`,m)>0

d(n, `,m) qn/N r `sm

(n, `,m) = (N2 q
2
e ,qe · qm, 12q

2
m). [Jatkar-Sen,SG-Gopalakrishna]

I The square-root of the Siegel modular form makes sense for
N = 1, 2, . . . , 6. [Cheng-Dabholkar,SG-Gopalakrishna,SG-Samanta]



Walls of marginal stability for N = 1, 2, 3

Sen obtained the following walls of marginal stability.
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Walls of marginal stability for N = 1, 2, 3

Sen obtained the following walls of marginal stability.

0 1/3 1/2 2/3 1

N=1

N=2

N=3

The polygons have finite number of edges: 3,4,6.



Walls of marginal stability for N = 4
Sen obtained the following walls of marginal stability.

Weyl chamber for

1
β

1

β
−1

α
−1

β
0

α
0

0 1/3 1/2 2/3 11/4 3/4
3/8 5/8

N = 4

α

The polygon has infinite edges. 1
2 is reached as a limit point.



Walls of marginal stability for N = 5
Sen obtained the following walls of marginal stability.
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5
)

•

1
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5
)

The polygon has infinite edges. 1
2 is not reached as a limit point.



Walls of marginal stability for N = 6
Sen obtained the following walls of marginal stability.
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The polygon has infinite edges. 1
2 is not reached as a limit point.



Walls of Marginal Stability to Lie algebras



Towards KM Lie algebras

I Let us assume that there exists a Lie algebra whose Weyl
chamber is identical the one obtained by the interior of the
polygon defined by the walls of marginal stability.

I To each edge with vertices (ba ,
d
c ), following Cheng-Verlinde,

we can associate a (real) simple root as follows:

(
b
a ,

d
c

)
←→ α =

(
2bd ad + bc

ad + bc 2ac

)
∈ PGL(2,Z) .

I The norm of the root is given by −2 det(α).
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Towards KM Lie algebras

I Let us assume that there exists a Lie algebra whose Weyl
chamber is identical the one obtained by the interior of the
polygon defined by the walls of marginal stability.

I To each edge with vertices (ba ,
d
c ), following Cheng-Verlinde,

we can associate a (real) simple root as follows:(
b
a ,

d
c

)
←→ α =

(
2bd ad + bc

ad + bc 2ac

)
∈ PGL(2,Z) .

I The norm of the root is given by −2 det(α).
I The Cartan matrix of the roots can be determined by the

inner product induced by the norm. One obtains:

A(3) =


2 −2 −10 −14 −10 −2
−2 2 −2 −10 −14 −10
−10 −2 2 −2 −10 −14
−14 −10 −2 2 −2 −10
−10 −14 −10 −2 2 −2
−2 −10 −14 −10 −2 2

 ,



Towards KM Lie algebras

I Let us assume that there exists a Lie algebra whose Weyl
chamber is identical the one obtained by the interior of the
polygon defined by the walls of marginal stability.

I To each edge with vertices (ba ,
d
c ), following Cheng-Verlinde,

we can associate a (real) simple root as follows:

(
b
a ,

d
c

)
←→ α =

(
2bd ad + bc

ad + bc 2ac

)
∈ PGL(2,Z) .

I The norm of the root is given by −2 det(α).

I The Cartan matrix of the roots can be determined by the
inner product induced by the norm. One obtains:

A(4) = 2− 4(n −m)2 , with m, n ∈ Z .

All Cartan matrices, A(N), for N = 1, 2, 3, 4 are rank 3.



The BKM Lie algebras for N ≤ 4

I The Cartan matrices, A(N) can be used to construct
Kac-Moody Lie algebras.

I The associated root lattices, ⊕iZαi , fit Nikulin’s classification
of rank-three hyperbolic lattices which admit a Lattice Weyl
vector.

I Further, the square-root of the 1
4 -BPS generating function,

∆(N)(Z), provides an automorphic correction to these KM Lie
algebras leading to BKM algebras.

I The cases of N = 2, 3 appear in the work of Gritsenko-Nikulin
on rank-three hyperbolic Lie algebras of elliptic type.

[Cheng-Dabholkar].

I For N = 4, it fits the general classification of Gritensko and
Nikulin and corresponds to rank-three hyperbolic Lie algebras
of parabolic type. [SG-Gopalakrishna]

I The modularity of the ∆(N)(Z) is crucial in proving that
denominator identity.



The BKM Lie algebras for N = 5, 6

I For N = 5, 6, we need to include walls from the central part
to get a closed polygon.

I The corresponding root lattices are rank-three hyperbolic
lattices with a Lattice vector. The norm of the Weyl vector
determines the type of lattice and it is of hyperbolic type.

I There is a no-go theorem of the Gritsenko-Nikulin which says
that there exist no rank-three BKM Lie algebras associated to
such lattices. However, it assumes that the denominator
identity is the one due to Borcherds which incorporates the
imaginary simple roots on the sum side.

I However, we have been able to show that he square-root of
the 1

4 -BPS generating function, ∆(N)(Z) appears to be the
denominator identity of a new kind of Lie algebra.



The BKM Lie algebras for N = 5, 6

I The product side obtained as a Borcherds product sees all the
simple roots that form the closed polygon.

I The sum side obtained as an additive lift is not covariant
under the Weyl group generated subset of roots shown in red.
Again, modularity is useful in proving this fact.

I The equality of the sum side and the product side is highly
non-trivial.

I The sum side of the Borcherds denominator formula has to be
further modified to interpret the sum side of the answer.

I We have some understanding based on experimentally looking
at how the other set of roots must be treated.

I We propose that there are new kinds of (B)KM Lie algebras
associated with rank-three hyperbolic lattices with Weyl
vector of hyperbolic type.



Concluding Remarks



Periodic Table of BKM Lie superalgebras



Conclusion

I We didn’t focus on two aspects of the problem: (i) Modular
aspects and (ii) Connections to various moonshines.

I Modularity is very important to proving Weyl covariance of
the WKB denominator formula. Characters of irreps of these
Lie algebras will also have nice modular properties. These are
being currently investigated with Viswanath and Shabbir.

I We have already seen glimpses of connections with umbral
moonshine that generalises Mathieu moonshine. Are there
more new examples that arise here?

I Can we write analogous formulae for 1
2 BPS states in N = 2

compactifications? The case of type II compactifications on
Borcea-Voison threefolds might be a good starting point.

I Can we construct new BKM Lie superalgebras for all
rank-three hyperbolic lattices of hyperbolic type in Nikulin’s
list? In our examples, the physics of wall-crossing gave us the
needed modular forms. Is there a nice way to get modular
form for these cases.



Thank You
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