Connecting LQG and String Theory
From Quantum Geometry to the Nambu-Goto Action

Deepak Vaid

Department of Physics
National Institute of Technology Karnataka

XXIII DAE-BRNS HEP Symposium
Dec 10 - Dec 14, 2018
IIT Madras
Outline

1 Motivations
Outline

1 Motivations

2 Hints from AdS/CFT
Outline

1. Motivations
2. Hints from AdS/CFT
3. LQG & Quantized Geometry
Outline

1. Motivations
2. Hints from AdS/CFT
3. LQG & Quantized Geometry
4. Nambu-Goto Action from LQG
LQG + String Theory = Why Bother?

Possibilities:

Both are wrong
LQG + String Theory = Why Bother?

Possibilities:

× Both are wrong we better hope not!
LQG + String Theory = Why Bother?

Possibilities:

✗ Both are wrong we better hope not!

String Theory is wrong
LQG + String Theory = Why Bother?

Possibilities:

✗ Both are wrong we better hope not!

✗ String Theory is wrong its valid, if only, as a physical model of a 1D extended object
LQG + String Theory = Why Bother?

Possibilities:

✗ Both are wrong we better hope not!

✗ String Theory is wrong its valid, if only, as a physical model of a 1D extended object

LQG is wrong
LQG + String Theory = Why Bother?

Possibilities:

✗ Both are wrong we better hope not!

✗ String Theory is wrong its valid, if only, as a physical model of a 1D extended object

✗ LQG is wrong grounded in universally accepted physics, bonus of quantum geometry.
LQG + String Theory = Why Bother?

Possibilities:

✗ Both are wrong we better hope not!

✗ String Theory is wrong its valid, if only, as a physical model of a 1D extended object

✗ LQG is wrong grounded in universally accepted physics, bonus of quantum geometry.

Both have some valid insights. Neither is a complete theory on its own.
LQG + String Theory = Why Bother?

Possibilities:

✗ Both are wrong we better hope not!

✗ String Theory is wrong its valid, if only, as a physical model of a 1D extended object

✗ LQG is wrong grounded in universally accepted physics, bonus of quantum geometry.

✔ Both have some valid insights. Neither is a complete theory on its own.
LQG + String Theory = Why Bother?

Possibilities:

✗ Both are wrong we better hope not!

✗ String Theory is wrong its valid, if only, as a physical model of a 1D extended object

✗ LQG is wrong grounded in universally accepted physics, bonus of quantum geometry.

✔ Both have some valid insights. Neither is a complete theory on its own.

..... only reasonable conclusion!
Hints from AdS/CFT

Holography: ’t Hooft (’93), Susskind (’94)
Hints from AdS/CFT

Holography: ’t Hooft (’93), Susskind (’94)

AdS/CFT: Maldacena, Gubser, Klebanov, Polyakov, Witten (’97-’98)
Hints from AdS/CFT

Holography: 't Hooft ('93), Susskind ('94)

AdS/CFT: Maldacena, Gubser, Klebanov, Polyakov, Witten ('97-'98)

QEC & Bulk/Boundary Correspondence via Tensor Networks: Harlow, Preskill, Pastawski, Yoshida (HaPPY) ('15)
Hints from AdS/CFT

Holography: ’t Hooft (’93), Susskind (’94)

AdS/CFT: Maldacena, Gubser, Klebanov, Polyakov, Witten (’97-’98)

QEC & Bulk/Boundary Correspondence via Tensor Networks: Harlow, Preskill, Pastawski, Yoshida (HaPPY) (’15)

Exact Holographic Mapping - Emergent Geometry from Tensor Networks: Qi (’13)
Hints from AdS/CFT

Holography: 't Hooft ('93), Susskind ('94)

AdS/CFT: Maldacena, Gubser, Klebanov, Polyakov, Witten ('97-'98)

QEC & Bulk/Boundary Correspondence via Tensor Networks: Harlow, Preskill, Pastawski, Yoshida (HaPPY) ('15)

Exact Holographic Mapping - Emergent Geometry from Tensor Networks: Qi ('13)

LQG & Exact Holographic Mapping: Han ('16)
Hints from AdS/CFT

Holography: ’t Hooft (’93), Susskind (’94)

AdS/CFT: Maldacena, Gubser, Klebanov, Polyakov, Witten (’97–’98)

QEC & Bulk/Boundary Correspondence via Tensor Networks: Harlow, Preskill, Pastawski, Yoshida (HaPPY) (’15)

Exact Holographic Mapping - Emergent Geometry from Tensor Networks: Qi (’13)

LQG & Exact Holographic Mapping: Han (’16)

Tensor Networks ≡ Spin Networks
Background independence is non-negotiable.
Loop Quantum Gravity

Background independence is non-negotiable.

Casts Gravity as gauge theory of connections and tetrads.
Loop Quantum Gravity

Background independence is non-negotiable.

Casts Gravity as gauge theory of connections and tetrads.

Canonical quantization a-la ADM.
Loop Quantum Gravity

Background independence is non-negotiable.

Casts Gravity as gauge theory of connections and tetrads.

Canonical quantization a-la ADM.

Spin Networks - exact solutions of diffeo & Gauss constraints.
Loop Quantum Gravity

Background independence is non-negotiable.

Casts Gravity as gauge theory of connections and tetrads.

Canonical quantization a-la ADM.

Spin Networks - exact solutions of diffeo & Gauss constraints.

Central result - Quantum Geometry, discrete areas and volumes.
Loop Quantum Gravity

Background independence is non-negotiable.

Casts Gravity as gauge theory of connections and tetrads.

Canonical quantization a-la ADM.

Spin Networks - exact solutions of diffeo & Gauss constraints.

Central result - Quantum Geometry, discrete areas and volumes.

Applications: LQC, BH entropy, ...
String Theory

QFT of extended objects.
Hints from AdS/CFT

String Theory

QFT of extended objects.

Explains Regge trajectories.

Scalar field: $\Phi(x)$, "Dilaton" - determines string coupling strength

Two index antisymmetric field: $B_{\mu \nu}(x)$, "Kalb-Ramond" - sources gauge fields

Two index, symmetric traceless field: $h_{\mu \nu}(x)$, "Graviton" - sources gravity...
String Theory

QFT of extended objects.

Explains Regge trajectories.

Particle spectrum including gauge fields and graviton.
String Theory

QFT of extended objects.

Explains Regge trajectories.

Particle spectrum including gauge fields and graviton.

Projecting out unphysical string modes we find:

Scalar field: $\Phi(x)$, "Dilaton" - determines string coupling strength

Two index antisymmetric field: $B_{\mu\nu}(x)$, "Kalb-Ramond" - sources gauge fields

Two index, symmetric traceless field: $h_{\mu\nu}(x)$, "Graviton" - sources gravity...
String Theory

QFT of extended objects.

Explains Regge trajectories.

Particle spectrum including gauge fields and graviton.

Projecting out unphysical string modes we find:

- Scalar field: $\Phi(x)$, “Dilaton” - determines string coupling strength
- Two index antisymmetric field: $B_{\mu\nu}(x)$, “Kalb-Ramond” - sources gauge fields
- Two index, symmetric traceless field: $h_{\mu\nu}(x)$, “Graviton” - sources gravity
String Theory

QFT of extended objects.

Explains Regge trajectories.

Particle spectrum including gauge fields and graviton.

Projecting out unphysical string modes we find:

Scalar field: $\Phi(x)$, "Dilaton" - determines string coupling strength

Two index antisymmetric field: $B_{\mu\nu}(x)$, "Kalb-Ramond" - sources gauge fields
String Theory

QFT of extended objects.

Explains Regge trajectories.

Particle spectrum including gauge fields and graviton.

Projecting out unphysical string modes we find:

Scalar field: $\Phi(x)$, “Dilaton” - determines string coupling strength

Two index antisymmetric field: $B_{\mu\nu}(x)$, “Kalb-Ramond” - sources gauge fields

Two index, symmetric traceless field: $h_{\mu\nu}(x)$, “Graviton” - sources gravity ...
String Theory

QFT of extended objects.

Explains Regge trajectories.

Particle spectrum including gauge fields and graviton.

Projecting out unphysical string modes we find:

Scalar field: $\Phi(x)$, “Dilaton” - determines string coupling strength

Two index antisymmetric field: $B_{\mu\nu}(x)$, “Kalb-Ramond” - sources gauge fields

Two index, symmetric traceless field: $h_{\mu\nu}(x)$, “Graviton” - sources gravity ...

AdS/CFT
Common Features

<table>
<thead>
<tr>
<th>String Theory</th>
<th>LQG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common Features

<table>
<thead>
<tr>
<th></th>
<th>String Theory</th>
<th>LQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.o.f</td>
<td>1D strings</td>
<td>1D graph edges</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common Features

<table>
<thead>
<tr>
<th></th>
<th>String Theory</th>
<th>LQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.o.f</td>
<td>1D strings</td>
<td>1D graph edges</td>
</tr>
<tr>
<td>BH Entropy</td>
<td>BPS State Counting</td>
<td>Number Partitions, Chern Simons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common Features

<table>
<thead>
<tr>
<th></th>
<th>String Theory</th>
<th>LQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.o.f</td>
<td>1D strings</td>
<td>1D graph edges</td>
</tr>
<tr>
<td>BH Entropy</td>
<td>BPS State Counting</td>
<td>Number Partitions, Chern Simons</td>
</tr>
<tr>
<td>Quantized Geometry</td>
<td>Minimum string size</td>
<td>Quantized Area, Volume</td>
</tr>
</tbody>
</table>
Common Features

<table>
<thead>
<tr>
<th></th>
<th>String Theory</th>
<th>LQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.o.f</td>
<td>1D strings</td>
<td>1D graph edges</td>
</tr>
<tr>
<td>BH Entropy</td>
<td>BPS State Counting</td>
<td>Number Partitions, Chern Simons</td>
</tr>
<tr>
<td>Quantized Geometry</td>
<td>Minimum string size</td>
<td>Quantized Area, Volume</td>
</tr>
<tr>
<td>Matter</td>
<td>Stacked D-branes $U(N)$ gauge fields</td>
<td>Bilson-Thompson Model, Topological d.o.f</td>
</tr>
</tbody>
</table>
Common Features

<table>
<thead>
<tr>
<th></th>
<th>String Theory</th>
<th>LQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.o.f</td>
<td>1D strings</td>
<td>1D graph edges</td>
</tr>
<tr>
<td>BH Entropy</td>
<td>BPS State Counting</td>
<td>Number Partitions, Chern Simons</td>
</tr>
<tr>
<td>Quantized Geometry</td>
<td>Minimum string size</td>
<td>Quantized Area, Volume</td>
</tr>
<tr>
<td>Matter</td>
<td>Stacked D-branes (U(N)) gauge fields</td>
<td>Bilson-Thompson Model, Topological d.o.f</td>
</tr>
<tr>
<td>State Space</td>
<td>String Networks</td>
<td>Spin Networks</td>
</tr>
</tbody>
</table>
Phase space: triads e_i^a, $su(2)$ connection A_a^i
LQG Outline

Phase space: triads e_i^a, $su(2)$ connection A_a^i

Satisfy P.B.: $\{A_a^i, e_j^b\} = \kappa \delta_a^b \delta_j^i$
Phase space: triads e^a_i, $su(2)$ connection A^i_a

Satisfy P.B.: $\left\{ A^i_a, e^b_j \right\} = \kappa \delta^b_a \delta^i_j$

Gauge invariant variables:
Phase space: triads e_i^a, $su(2)$ connection A^i_a

Satisfy P.B.: $\{A^i_a, e^b_j\} = \kappa \delta^b_a \delta^i_j$

Gauge invariant variables:

Holonomies: $g_\gamma[A] = \mathcal{P} \exp \left\{-i \int_\gamma A^i_a(x) \tau_i n^a dx \right\}$
Phase space: triads e_i^a, $\mathfrak{su}(2)$ connection A_a^i

Satisfy P.B.: $\left\{ A_a^i, e_j^b \right\} = \kappa \delta_a^b \delta_i^j$

Gauge invariant variables:

Holonomies: $g_\gamma[A] = \mathcal{P} \exp \left\{ -i \int_\gamma A_a^i(x) \tau_i n^a dx \right\}$

Smeared triads: $P_{(Sf)} = \int_{Sf_i(x)} e_a^i e_b^k \epsilon_{ijk} dx^a dx^b$
Phase space: triads e_i^a, su(2) connection A_a^i

Satisfy P.B.: $\{A_a^i, e_j^b\} = \kappa \delta_a^b \delta_j^i$

Gauge invariant variables:

Holonomies: $g_\gamma[A] = \mathcal{P} \exp \left\{ -i \int_\gamma A_a^i(x) \tau_i n^a dx \right\}$

Smeared triads: $P_{(S_f)} = \int S f_i(x) e_a^i e_b^k \epsilon^{ijk} dx^a dx^b$

States: $\Psi_\Gamma = \psi(g_1, g_2, \ldots, g_n)$
Graph States

\[\Psi_n = \psi(x_1, \ldots, x_n) = \int \prod_{i=1}^{n} \left[d^3 k_i \right] e^{-i(k_1 \cdot x_1 + \ldots + k_n \cdot x_n)} \times \ldots \times \tilde{\Psi}(k_1, \ldots, k_n) \]
Graph States

\[\Psi_n = \psi(x_1, \ldots, x_n) \]

\[= \int \prod_{i=1}^{n} \left[d^3 k_i \right] e^{-i(k_1 \cdot x_1 + \ldots + k_n \cdot x_n)} \times \ldots \]

\[\ldots \times \tilde{\Psi}(k_1, \ldots, k_n) \]

\[\Psi_{\Gamma} = \psi(g_1, g_2, \ldots, g_n) \]

\[= \sum_{i=1}^{n} \sum_{j_i=1/2}^{\infty} D^{j_1}(g_1)_{a_1 b_1} \ldots D^{j_n}(g_n)_{a_n b_n} \times \ldots \]

\[\ldots \times \tilde{\Psi}^{a_1 b_1 \ldots a_n b_n}(j_1, \ldots, j_n) \]
Graph States (contd.)
Area Operator

Area of 2D surface:

\[A(S) = \int_S d^2x \sqrt{h} \]

where: \(h_{ab} = e^i_a e^j_b \delta_{ij} \Rightarrow \det(h) = e^i_z e^j_z \delta_{ij} \)
Area Operator

Area of 2D surface:

\[A(S) = \int_S d^2x \sqrt{h} \]

where: \(h_{ab} = e^a_i e^j_b \delta_{ij} \Rightarrow \det(h) = e^i_z e^j_z \delta_{ij} \)

\(e^a_i \) is canonically conjugate to the connection \(A^i_a \), from which:

\[\hat{e}^a_i = -i\hbar \kappa \frac{\delta}{\delta A^i_a} \]
Area Operator

Area of 2D surface:

\[A(S) = \int_S d^2 x \sqrt{h} \]

where: \(h_{ab} = e^i_a e^j_b \delta_{ij} \Rightarrow \det(h) = e^i_z e^j_z \delta_{ij} \)

\(e^a_i \) is canonically conjugate to the connection \(A^i_a \), from which:

\[\tilde{e}^a_i = -i\hbar \kappa \frac{\delta}{\delta A^i_a} \]

Action of “momentum” operator on holonomy:

\[\frac{\delta}{\delta A^i_a} g_{\gamma} [A] = n_a(x) \tau^i g_{\gamma} [A] \]
Area Operator

Area of 2D surface:

\[A(S) = \int_S \sqrt{h} \ d^2x \]

where: \(h_{ab} = e_a^i e_b^j \delta_{ij} \Rightarrow \det(h) = e_z^i e_z^j \delta_{ij} \)

\(e_i^a \) is canonically conjugate to the connection \(A_i^a \), from which:

\[\tilde{e}_i^a = -i\hbar \kappa \frac{\delta}{\delta A_i^a} \]

Action of "momentum" operator on holonomy:

\[\frac{\delta}{\delta A_i^a} g_\gamma[A] = n_a(x) \tau^i g_\gamma[A] \]

Action on graph state:

\[\frac{\delta}{\delta A_i^a(x)} \Psi(g_1, \ldots, g_k, \ldots, g_n) = n_a^k(x) \tau^i \Psi \]
Area Operator (contd.)

Area Operator:

\[\hat{A} = \sum_{I=1}^{N} \sqrt{\delta_{jk} \hat{e}_{z}^{j} \hat{e}_{z}^{k}} = 8\pi\hbar \gamma G_{N} \sum_{I=1}^{N} \sqrt{\delta_{jk} \frac{\delta}{\delta A_{z}^{j}} \frac{\delta}{\delta A_{z}^{k}}} \]
Area Operator (contd.)

Area Operator:

\[
\hat{A} = \sum_{I=1}^{N} \sqrt{\delta_{jk} \hat{e}_z^j \hat{e}_z^k} = 8\pi\hbar\gamma G_N \sum_{I=1}^{N} \sqrt{\delta_{jk} \frac{\delta}{\delta A_z^j} \frac{\delta}{\delta A_z^k}}
\]

\[
\hat{A}_S \Psi_\Gamma = 8\pi\gamma l_{PL}^2 \sum_k \sqrt{j_k (j_k + 1)} \Psi_\Gamma
\]
Area Operator (contd.)

Area Operator:

\[\hat{A} = \sum_{I=1}^{N} \sqrt{\delta_{jk} \hat{e}_z^j \hat{e}_z^k} = 8\pi\hbar\gamma G_N \sum_{I=1}^{N} \sqrt{\delta_{jk}} \frac{\delta}{\delta A^j_z} \frac{\delta}{\delta A^k_z} \]

\[\hat{A}_S \Psi_\Gamma = 8\pi\gamma l_{PL}^2 \sum_k \sqrt{j_k(j_k+1)} \Psi_\Gamma \]

Area = \(8\pi l_{PL}^2 \sqrt{j(j+1)}\)
Area Operator (contd.)

Area Operator:

\[\hat{A} = \sum_{I=1}^{N} \sqrt{\delta_{jk} \hat{e}_z^j \hat{e}_z^k} = 8\pi\hbar\gamma G_N \sum_{I=1}^{N} \sqrt{\delta_{jk} \frac{\delta}{\delta A_z^j} \frac{\delta}{\delta A_z^k}} \]

\[\hat{A}_S \Psi \Gamma = 8\pi\gamma l_{PL}^2 \sum_{k} \sqrt{j_k(j_k+1)} \Psi \Gamma \]
String Action from Area

Nambu-Goto action:

$$S_{NG} = -T \int d\tau \, d\sigma \sqrt{-\text{det}(h_{AB})}$$
String Action from Area

Nambu-Goto action:

\[S_{NG} = -T \int d\tau \ d\sigma \sqrt{-\text{det}(h_{AB})} \]

Conjecture:

\[S_{NG} \propto \langle \psi | \hat{A} | \psi \rangle \]
String Action from Area

Nambu-Goto action:

\[S_{NG} = -T \int d\tau \, d\sigma \sqrt{-\det(h_{AB})} \]

Conjecture:

\[S_{NG} \propto \langle \Psi | \hat{A} | \Psi \rangle \]

String Field Theory action:

\[S_{SFT} = \langle \Psi | Q | \Psi \rangle \]

where \(Q \) is a BRST operator. What is the relation between \(Q \) and \(\hat{A} \)?
String Action from Area

Nambu-Goto action:

\[S_{NG} = -T \int d\tau \, d\sigma \sqrt{-\det(h_{AB})} \]

Conjecture:

\[S_{NG} \propto \langle \Psi | \hat{A} | \Psi \rangle \]

String Field Theory action:

\[S_{SFT} = \langle \Psi | Q | \Psi \rangle \]

where \(Q \) is a BRST operator. What is the relation between \(Q \) and \(\hat{A} \)?

Immirizzi parameter and string tension:
String Action from Area

Nambu-Goto action:

\[S_{NG} = -T \int d\tau \, d\sigma \sqrt{-\det(h_{AB})} \]

Conjecture:

\[S_{NG} \propto \langle \Psi | \hat{A} | \Psi \rangle \]

String Field Theory action:

\[S_{SFT} = \langle \Psi | Q | \Psi \rangle \]

where \(Q \) is a BRST operator. What is the relation between \(Q \) and \(\hat{A} \)?

Immirizi parameter and string tension:

\[S_{NG} \sim \text{tension} \times \text{area} \]
String Action from Area

Nambu-Goto action:

\[S_{NG} = -T \int d\tau \, d\sigma \sqrt{-\det(h_{AB})} \]

Conjecture:

\[S_{NG} \propto \langle \Psi | \hat{A} | \Psi \rangle \]

String Field Theory action:

\[S_{SFT} = \langle \Psi | \mathcal{Q} | \Psi \rangle \]

where \(\mathcal{Q} \) is a BRST operator. What is the relation between \(\mathcal{Q} \) and \(\hat{A} \)?

Immirizi parameter and string tension:

\[S_{NG} \sim \text{tension} \times \text{area} \]

\[\langle \Psi | \hat{A} | \Psi \rangle \sim \beta \times \text{area} \Rightarrow T_{\text{string}} = \beta T_{\text{loop}} \]