Constraining light DM fermions from relic density, SN1987A cooling and the role of Tsallis statistics

DAE-HEP 2018 @ IITM

Atanu Guha
Table of contents

1 Introduction
 • Historical Events and Evidences of Dark Matter
 • Classification of Dark Matter

2 Background Framework
 • Effective DM Model
 • Supernova SN1987A Cooling and New Physics
 • \(q \)-generalized distribution function for fermions
 • DM pair production process
 • Free Streaming Bound and Optical Depth Criteria
 • Constraining DM fermions from relic density

3 Results

4 Conclusions

5 Ongoing Work and Future Plan
In 1932 Jan Hendrik Oort analyzed the motion of the stars in the neighbourhoods of our solar system. From the estimated gravitational potential he found out that the known stars are moving faster than expected.

In 1933 Fritz Zwicky estimated the average mass of the galaxies within Coma cluster as 160 times larger than expected from their luminosity. Also the orbital velocities of member galaxies were 10 times larger than expected from the total mass of the Coma cluster.
In 1975 **Vera Rubin** inferred that most of the stars in the outer region of the spiral galaxies orbit roughly with the equal velocity.

\[v = \sqrt{\frac{GM(r)}{r}} \quad \text{and} \quad v(r) \approx \text{constant} \quad \Rightarrow \quad M(r) \propto r \]

Evidences for the existence of DM include gravitational lensing, bullet cluster.
Structure formation of the universe: Luminous matter (∼ 4%) is not sufficient, non-luminous matter (dubbed as dark matter ∼ 26%) is required.

They are dark as they can’t absorb, emit, reflect light! They does not interact with the electromagnetic force like SM particles.

Their interaction with the SM particles is very weak whereas they are highly massive (WIMPs).
Dark Matter can be classified on the basis of

- **Thermal History:** Thermal DM are produced via the collision of cosmic plasma in radiation dominated area, whereas, non-thermal DM particles are produced by decay of massive particles.

- **On the basis of particle type:**
 1. Scalar
 2. Vector
 3. Fermion

- **From mass and speed:**
 1. **Hot** dark matter candidates are of low mass (\(\sim \) keV) and move with relativistic speeds.
 2. **Cold** dark matter candidates are non-relativistic and made up of heavier particles (mass \(\sim \) MeV and more).
 3. **Warm** dark matter candidates (sterile neutrinos) are intermediate of these two.

Model described by the effective Lagrangian

\[\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \sum_i \frac{f_i^{(5)}}{\Lambda} O_i^{(5)} + \sum_i \frac{f_i^{(6)}}{\Lambda^2} O_i^{(6)} + \cdots \]

The following symmetry should hold for the Lagrangian

- For scalar and fermionic DM: \(SU(3)_c \times SU(2)_L \times U(1)_Y \times Z_2 \)
- For vector DM: \(SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_\chi \)
Supernova SN1987A:

- The supernova explosion caused by the death of the star Sanduleak $-69^0\ 202$
- The progenitor was a B3 Supergiant of mass $20M_\odot$, luminosity 10^5L_\odot and temperature 16000 K.

The energy released in SN1987A explosion is enormous: it is the gravitational binding energy E_g of the proto-neutron star (of mass M_{PNS}), given by

$$E_g = \frac{3G_NM_{PNS}^2}{5R_{NS}} \sim 3.0 \times 10^{53} \text{ erg}.$$

Here $M_{PNS} = 1.5M_\odot$, $R_{NS} = 10$ Km and G_N is the Newton’s gravitational constant.
Supernova SN1987A energy loss:

- Neutrino takes away 99% of the energy 3.0×10^{53} erg. released in SN1987A explosion. The emitted neutrino energy $E_\nu = \frac{E_g}{6} = 0.5 \times 10^{53}$ erg.
- The observed neutrino luminosity in the detector (IMB and Kamiokande) is $L_\nu = 10^{53}$ erg. So $\frac{L_\nu}{6} \sim 10^{52}$ erg.
- Remaining 1% by other channels \rightarrow New Physics channels!!

Raffelt’s criteria on energy loss rate for any new physics channel:
If any energy-loss rate of any new(physics) channel

$$\dot{\epsilon}_x > 10^{19} \text{ erg g}^{-1} \text{ s}^{-1}$$

then it will remove sufficient energy from the explosion to invalidate the current understanding of Type-II supernovae neutrino signal a.

For a system with equilibrium temperature T,

$$p_i = \frac{e^{-\beta \epsilon_i}}{W \sum_{i=1}^{W} e^{-\beta \epsilon_i}}$$

If the temperature is fluctuating around an average value and the system is in an out-of-equilibrium quasi-stationary state, the Boltzmann-Gibbs entropy can be generalized to a non-extensive q-deformed entropy 2

$$S_q = k \sum_{i=1}^{W} p_i \ln_q \frac{1}{p_i} \equiv \frac{k \left(1 - \sum_{i=1}^{W} p_i^q \right)}{q - 1},$$

- In the limit $q \to 1$, it coincides with the Boltzmann-Gibbs entropy, i.e. $S_{q=1} = S_{BG}$.
- In the framework of Tsallis statistics these special non-equilibrium states can be described with different q and the equilibrium statistical mechanics can be treated as a special case for $q = 1.0$.

Extremizing S_q subject to constraints yields a generalized canonical ensemble where the probability to observe a microstate of energy ϵ_i is given by

$$p_i = e^{-q \beta \epsilon_i} \equiv \frac{1}{[1 + (q - 1)\beta \epsilon_i]^{\frac{1}{q-1}}},$$

The q-deformed probability distribution function may be driven by the non-equilibrium situation with local temperature fluctuation over a region of space, which can be accounted for by defining a χ^2 distribution of the form

$$f(\beta) = \frac{1}{\Gamma \left(\frac{n}{2}\right)} \left(\frac{n}{2\beta_0}\right)^{n/2} \beta^{\frac{n}{2} - 1} \exp \left(-\frac{n\beta}{2\beta_0}\right),$$

where n is the degree of the distribution, i.e. the number of independent Gaussian random variables X_i, $i = 1,, n$ and $\beta = \sum_{i=1}^{n} X_i^2$ is the fluctuating inverse temperature, with the average value

$$\beta_0 \equiv \langle \beta \rangle = n \langle X_i^2 \rangle = \int_{0}^{\infty} d\beta \beta f(\beta).$$

Taking into account the local temperature fluctuation, integrating over all β, we find the q-generalized Maxwell-Boltzmann distribution

$$\mathcal{P}(E) \equiv \frac{1}{Z} B(E) = \frac{1}{Z} \int_0^\infty d\beta \, e^{-\beta E} f(\beta) = \frac{1}{\left[1 + (q - 1)bE\right]^{\frac{1}{q-1}}} \equiv e^{-\beta_0 E},$$

$b = \frac{\beta_0}{4 - 3q}$ and the normalization constant $Z = \int_0^\infty B(E) dE$.

The average occupation number of any particle within this q-deformed statistics formalism is given by

$$f(\beta, E) = \frac{1}{\left[1 + (q - 1)bE\right]^{\frac{1}{q-1}}} \pm 1 \equiv \frac{1}{e^{\beta_0 E} \pm 1},$$

$e_{\beta_0}^{\beta_0 E}$ is the effective Boltzmann factor. In $q \to 1$ limit, $e_{\beta_0}^{\beta_0 E}$ reduces to the usual Boltzmann factor $e^{-\beta_0 E} = e^{-\beta_0 E}$.

Interaction via Effective Coupling:

\[\mathcal{L}_{DM} = -\frac{i}{2} \bar{\chi} \sigma_{\mu\nu} \left(\mu_\chi + \gamma_5 d_\chi \right) \chi F^{\mu\nu} \]

The cross-section for the process:

\[\sigma(e^- e^+ \rightarrow \chi \bar{\chi}) = \frac{\alpha}{6s} \cdot \sqrt{1 - \frac{4m^2_\chi}{s}} \cdot \left[\mu^2_\chi (s + 8m^2_\chi) + d^2_\chi (s - 4m^2_\chi) \right] \]

Energy loss rate:

\[
\dot{\varepsilon}_{e^- e^+ \rightarrow \chi \bar{\chi}} = \frac{1}{\rho_{SN}} \left\langle n_{e^-} n_{e^+} \sigma_{e^- e^+ \rightarrow \chi \bar{\chi}} V_{rei} E_{C.M.} \right\rangle
\]

\[
= \frac{1}{\rho_{SN}} \frac{1}{\pi^2} \int_{m_\chi}^\infty dE_1 \int_{m_\chi}^\infty dE_2 \frac{E_1 E_2 (E_1 + E_2)^3}{2D_1 D_2} \sigma_{e^- e^+ \rightarrow \chi \bar{\chi}}
\]

\[
\dot{\varepsilon}_{e^- e^+ \rightarrow \chi \bar{\chi}} = \frac{\alpha T^7}{12 \pi^4 \rho_{SN}} \int_{m_\chi T}^\infty dx_1 \int_{m_\chi T}^\infty dx_2 \frac{x_1 x_2 (x_1 + x_2)}{[(1 + \frac{b}{\tau} (T x_1 - \mu_{e^-}))^{\tau} + 1] [(1 + \frac{b}{\tau} (T x_2 - \mu_{e^+}))^{\tau} + 1]}
\]

with

\[
\mathcal{F} = \sqrt{1 - \frac{4 m^2_\chi}{T^2 (x_1 + x_2)^2}} \cdot \left[\mu^2_\chi \left\{ (x_1 + x_2)^2 + \frac{8 m^2_\chi}{T^2} \right\} + d^2_\chi \left\{ (x_1 + x_2)^2 - \frac{4 m^2_\chi}{T^2} \right\} \right], \tau = \frac{1}{q - 1}
\]

In undeformed scenario

\[
\dot{\varepsilon}_{e^- e^+ \rightarrow \chi \bar{\chi}} = \frac{\alpha T^7}{12 \pi^4 \rho_{SN}} \int_{m_\chi T}^\infty dx_1 \int_{m_\chi T}^\infty dx_2 \frac{x_1 (x_1 + x_2)}{\exp \left(x_1 - \frac{\mu_{e^-} T}{T} \right) + 1} \frac{x_2}{\exp \left(x_2 - \frac{\mu_{e^+} T}{T} \right) + 1}
\]

Bounds on Λ using $\dot{\varepsilon}_{e^- e^+ \rightarrow \chi \bar{\chi}} \leq 10^{19}$ erg g$^{-1}$ s$^{-1}$ and $\mu_\chi \sim d_\chi \sim \frac{1}{\Lambda}$
Free Streaming Bound and Optical Depth Criteria

Mean free path of the DM fermions

\[\lambda_\chi = \frac{1}{n_e \cdot \sigma_{e\chi \rightarrow e\chi}} \]

- \(n_e \) = number density of colliding electrons inside SN \(= 8.7 \times 10^{43} \text{ m}^{-3} \).
- \(\sigma_{e\chi \rightarrow e\chi} \) is related to \(\sigma_{ee \rightarrow \chi\chi} \) via crossing symmetry.

The optical depth criteria: Emergent particles originate near and above the layer at which optical depth \(= 2/3 \)

\[\int_{r_0}^{R_c} \frac{dr}{\lambda_\chi} \leq \frac{2}{3} \]

to investigate whether the DM fermion produced at a depth \(r_0 \) free streams out of the SN or gets trapped inside the SN. We set \(r_0 = 0.9 R_c \) in our analysis, where \(R_c \) \((\approx 10 \text{ km}) \), the radius of the supernova core (proto-neutron star).

Constraining DM fermions from relic density

- After freeze-out (when the particle species fall out of thermal equilibrium) the microscopic evolution of the phase space distribution of a particle species is governed by Boltzmann equation.

- The Boltzmann equation in FRW cosmology

\[
\frac{dY}{dx} = \frac{1}{3H} \frac{ds}{dx} \langle \sigma v_{rel} \rangle \left(Y^2 - Y_{eq}^2 \right)
\]

With \(Y = \frac{n}{s} \), \(x = \frac{m}{T} \) (\(s, m, T \) denotes the entropy density, mass of the particle species and temperature respectively).

The thermal averaged crosssection times relative velocity

\[
\langle \sigma v_{rel} \rangle = \frac{\int \sigma v_{rel} e^{-E_1/T} e^{-E_2/T} d^3p_1 d^3p_2}{\int e^{-E_1/T} e^{-E_2/T} d^3p_1 d^3p_2}
\]

FRW cosmology \(H = \left(\frac{8}{3} \pi G \rho \right)^{\frac{1}{2}} \)

The expressions for the density \(\rho \) and entropy density \(s \)

\[
\rho = g_{eff}(T) \frac{\pi^2}{30} T^4 \quad ; \quad s = h_{eff}(T) \frac{2\pi^2}{45} T^3
\]

\(^8\)Kolb and Turner, *The Early universe*, Addison-Wesley (1990)
Subsequently we get the following form of the Boltzmann equation \(^9\)

\[
\frac{dY}{dx} = - \left(\frac{45}{\pi} G \right)^{-\frac{1}{2}} \frac{m}{x^2} g^\frac{1}{2}_* \langle \sigma v \rangle (Y^2 - Y_{eq}^2);
\]

\[
g^\frac{1}{2}_* = \frac{h_{eff}}{g^\frac{1}{2}_{eff}} \left(1 + \frac{1}{3} \frac{T}{h_{eff}} \frac{dh_{eff}}{dT} \right)
\]

Total effective degree of freedom for all species \(g_{eff}(T) = \sum_i g_i(T)\) and \(h_{eff}(T) = \sum_i h_i(T)\). The effective degrees of freedom for each species

\[
g_i(T) = \frac{15g_i}{\pi^4} x_i^4 \int_1^\infty \frac{z\sqrt{z^2 - 1}}{\exp(x_iz) + \eta_i} z \, dz
\]

\[
h_i(T) = \frac{45g_i}{4\pi^4} x_i^4 \int_1^\infty \frac{z\sqrt{z^2 - 1}}{\exp(x_iz) + \eta_i} \frac{4z^2 - 1}{3z} \, dz
\]

with \(x_i = m_i/T; \ z = E_i/m_i; \ m_i = \text{mass of that particular species.}\ \eta_i = \pm 1\) for Fermi-Dirac and Bose-Einstein statistics.

Integrating from the freeze-out period to the present epoch we get

\[\frac{1}{Y_0} = \left(\frac{45}{\pi G} \right)^{-\frac{1}{2}} \int_{T_0}^{T_f} g_*^{\frac{1}{2}} \langle \sigma v \rangle \, dT \]

At freeze-out the number density of the concerned particle is considered to be very high. So at \(T = T_f \), \(\frac{1}{Y_f} = \frac{s_f}{n_f} \) to be very small compared to the other terms. Relic density of the concerned particle at present day is obtained evaluating \(Y_0 \) in the units of the critical density

\[\Omega_\chi = \frac{\rho_\chi^0}{\rho_{\text{crit}}} = \frac{m_\chi s_0 Y_0}{\rho_{\text{crit}}} \]

with the critical density \(\rho_{\text{crit}} = \frac{3H^2}{8\pi G} \), \(s_0 \) in the entropy density today. With the knowledge of the present day background radiation temperature \(T_0 = 2.726 \, \text{K} = 2.35 \times 10^{-16} \, \text{TeV} \) we obtain

\[\Omega_\chi h^2 = 2.755 \times 10^{11} \left(\frac{m_\chi}{\text{TeV}} \right) Y_0 \]

\(^{10}\text{Debasish Majumdar, } \textit{DARK MATTER: An Introduction}, \textit{CRC Press, (2014).}\)
The total cross section for the process $\chi(p_1)\bar{\chi}(p_2) \xrightarrow{\gamma} e^-(p_3)e^+(p_4)$ is given by

$$\sigma(\chi\bar{\chi} \xrightarrow{\gamma} e^- e^+) = \frac{\alpha}{6s} \cdot \left(\sqrt{1 - \frac{4m^2_{\chi}}{s}}\right)^{-1} \cdot \left[\mu^2_{\chi}(s + 8m^2_{\chi}) + d^2_{\chi}(s - 4m^2_{\chi})\right]$$

$= m_{\chi}$ mass of DM fermions, $\alpha = \frac{e^2}{4\pi}$ and $s = (p_1 + p_2)^2 = (p_3 + p_4)^2$.

Thermal averaged cross-section times velocity with the dimensionless variables $x_i = E_i/T$ ($i = 1, 2$)

$$\langle \sigma_{\chi\bar{\chi} \rightarrow e^- e^+ V_{rel}} \rangle = \frac{\alpha}{6} \frac{\int_{m_{\chi}}^{\infty} \int_{m_{\chi}}^{\infty} dx_1 \; dx_2 \; \sqrt{x_1^2 - \frac{m^2_{\chi}}{T^2}} \; \sqrt{x_2^2 - \frac{m^2_{\chi}}{T^2}} \; \mathcal{F} \; f_1 \; f_2}{\int_{m_{\chi}}^{\infty} \int_{m_{\chi}}^{\infty} dx_1 \; dx_2 \; x_1 \; x_2 \; \sqrt{x_1^2 - \frac{m^2_{\chi}}{T^2}} \; \sqrt{x_2^2 - \frac{m^2_{\chi}}{T^2}} \; f_1 \; f_2}$$

where the function \mathcal{F} is given by

$$\mathcal{F} = \left(\sqrt{1 - \frac{4m^2_{\chi}}{T^2(x_1 + x_2)^2}}\right)^{-1} \cdot \left[\mu^2_{\chi} \left\{(x_1 + x_2)^2 + \frac{8m^2_{\chi}}{T^2}\right\} + d^2_{\chi} \left\{(x_1 + x_2)^2 - \frac{4m^2_{\chi}}{T^2}\right\}\right]$$

$\mu_{\chi} \sim d_{\chi} \sim 1/\Lambda$
Constraining DM fermions from relic density

- The experimental value of the non-baryonic relic density i.e. 0.1186 ± 0.0020 (obtained from the measurement of CMB anisotropy and the spatial distribution of galaxies).

- In the limiting case:

 \[
 \Omega_{\chi} h^2 = 0.1186 = 2.755 \times 10^{11} \ m_\chi \ Y_0 \\
 \implies 0.1186 = \frac{2.755 \times 10^{11} \ m_\chi}{(\frac{45}{\pi}G)^{-\frac{1}{2}} \int_{T_0}^{T_f} g^*_s \frac{1}{2} \langle \sigma v \rangle \ dl}
 \]

- The upper bound on Λ has been obtained as

 \[
 \langle \sigma v \rangle \propto \frac{1}{\Lambda^2}; \quad \Omega_{\chi} h^2 \propto \frac{1}{\langle \sigma v \rangle}
 \]

 And

 \[
 \Omega_{\chi} h^2 \leq 0.1186
 \]
Astrophysical Bounds on effective scale Λ

- SN Cooling bound using Raffelt’s criteria: $\dot{\varepsilon}_{e^{-}e^{+}\rightarrow\chi\bar{\chi}} \leq 10^{19}$ erg g$^{-1}$ s$^{-1}$.
- Free Streaming Bound using Optical Depth Criterion: $\int_{r_{0}}^{R_{c}} n_{e} \sigma_{\text{scatt}} \, dr \leq \frac{2}{3}$.
- Relic Bound using $\Omega_{\chi}h^{2} \leq 0.1186$.

$$\Omega h^{2} = 0.1186, \ q = 1.0$$

$T_{SN} = 30$ MeV

$T_{SN} = 50$ MeV
Summary

- Existing literature: Our results for the case $q = 1.0, \Lambda = \Lambda_{\mu}, d_\chi = 0$ is in agreement with Kadota and Silk, Phys. Rev. D, 89, 103528 (2014).

- We worked within the formalism of Tsallis statistics, where we took care of the non-equilibrium conditions which may arise due to temperature fluctuations inside supernova.

- $q \to 1.0$ denotes the undeformed case and for q-deformed case we took a benchmark value $q = 1.1$.

For the supernovae temperature (average) $T_{SN} = 30(50)$ MeV and dark matter mass $m_\chi = 30$ MeV, the lower and the upper bound on Λ

<table>
<thead>
<tr>
<th>q</th>
<th>Free streaming</th>
<th>SN cooling</th>
<th>Relic bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.05×10^8</td>
<td>3.34×10^6</td>
<td>4.92×10^7</td>
</tr>
<tr>
<td>1.1</td>
<td>3.6×10^7</td>
<td>3.23×10^7</td>
<td>1.58×10^8</td>
</tr>
</tbody>
</table>
In undeformed scenario ($q = 1.0$) the free-streaming bound and SN cooling bound are different. But if we consider that most of the DM fermions are producing at the outer region of the SN core (at temperature ~ 50 MeV) \(^{11}\) and takes into account the non-equilibrium conditions, they match with each other.

The value of the deformation parameter ($q = 1.1$) is consistent with the spectrum \(^{12}\) of the emitted neutrinos or anti-neutrinos ($q \leq 1.27$) \(^{13}\) and has been chosen for pure phenomenological purposes.

To work with other operators like leptophilic operators.

\[\mathcal{L}_{\text{eff}} = \frac{1}{\Lambda^2} \sum_j \left(\bar{\chi} \Gamma_j^j \chi \right) \left(\bar{e} \Gamma_j^j e \right) \]

- **S-P type:** \(\Gamma_\chi = c_\chi^S + i c_\chi^P \gamma_5 \), \(\Gamma_e = c_e^S + i c_e^P \gamma_5 \)
- **V-A type:** \(\Gamma^\mu_\chi = (c_\chi^V + c_\chi^A \gamma_5) \gamma^\mu \), \(\Gamma_{e\mu} = (c_e^V + c_e^A \gamma_5) \gamma_\mu \)
- **T-AT type:** \(\Gamma^{\mu\nu}_\chi = (c_\chi^T + i c_\chi^{AT} \gamma_5) \sigma^{\mu\nu} \), \(\Gamma_{e\mu\nu} = \sigma^{\mu\nu} \)

Taking care of the uncertainty in the progenitor mass using a SN profile

\[\rho(r) = \rho_c \times \begin{cases} 1 + k_\rho \left(1 - \frac{r}{R_c}\right); & r < R_c \\ \left(\frac{r}{R_c}\right)^{-\nu}; & r \geq R_c \end{cases} \quad ; \quad T(r) = T_c \times \begin{cases} 1 + k_T \left(1 - \frac{r}{R_c}\right); & r < R_c \\ \left(\frac{r}{R_c}\right)^{-\nu/3}; & r \geq R_c \end{cases} \]

\(R_c = 10 \text{ km}, \quad T_c = 30 \text{ MeV}, \quad \rho_c = 3 \times 10^{14} \text{ gm cm}^{-3}. \)
Effective vertices for DM interaction with SM scalars, gauges bosons and fermions:

Annihilation processes of DM fermions:
Preliminary result

\[\rho_{SN} = 3 \times 10^{14} \text{gm/cc, } T_{SN} = 30 \text{ MeV} \]

\[\rho_{SN} = 10^{14} \text{gm/cc, } T_{SN} = 50 \text{ MeV} \]

\[q = 1.0 \]

\[q = 1.1 \]

\[r_{SN} = 3 \times 10^{14} \text{gm/cc, } T_{SN} = 30 \text{ MeV} \]

\[r_{SN} = 10^{14} \text{gm/cc, } T_{SN} = 50 \text{ MeV} \]

\[q = 1.1 \]

\[q = 1.0 \]

\[SN \text{ Cooling} \]

\[Free \text{ Streaming} \]

\[Relic \text{ Bound} \]

\[XENON10 \]

\[SuperCDMS \]

\[SENSEI \]

\[FIRAS \]

\[PIXIE \]

\[Earth \text{ Heat Flux} \]

\[m_{\chi} \text{ (MeV)} \]

\[\Lambda \text{ (TeV)} \]
The annihilation processes we can construct using the effective vertices:

This leads to interesting phenomenological studies both in collider (Linear collider and LHC) and astrophysical contexts.
The dimension-6 effective operator for $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_\chi$ invariant Lagrangian:

$$O_{\phi Z} = \frac{1}{2}(\phi^\dagger \phi) C_{\mu\nu} C^{\mu\nu}$$

where we assumed that SM Quarks, Leptons and the Higgs field don’t have any $U(1)_\chi$ quantum number and $C_{\mu\nu} = \partial_\mu Z_\nu - \partial_\nu Z_\mu$. So,

$$O_{\phi Z} = \frac{1}{4}(v^2 + 2vh + h^2) C_{\mu\nu} C^{\mu\nu}$$

The annihilation processes we can construct using the effective vertices:
References

(8) L. Husdal, Galaxies 4, 78 (2016).

"No point is more central than this, that empty space is not empty. It is the seat of the most violent Physics."

— John Archibald Wheeler