Naturalness and two Higgs doublet models

Presented at XXIII DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM, 2018

Ambalika Biswas^{*}, Amitabha Lahiri[†]

*Dept. of Physics, Vivekananda College, Thakurpukur [†]Dept. of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences

12th December, 2018

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

- "Masses of physical scalars in two Higgs doublet models", Ambalika Biswas, Amitabha Lahiri, Phys.Rev. D91 (2015) no.11, 115012 [arXiv:1412.6187 [hep-ph] — PDF].
- "Alignment, reverse alignment, and wrong sign Yukawa couplings in two Higgs doublet models", Ambalika Biswas, Amitabha Lahiri, Phys.Rev. D93 (2016) no.11, 115017 [arXiv:1511.07159 [hep-ph] — PDF].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Overview

DAE-BRNS (IITM)

・ロト ・日・・日・・日・・ つくぐ

Introduction

DAE-BRNS (IITM)

Physical Higgs masses from VCs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1

900

- Introduction
- Veltman Conditions

990

3

- Introduction
- Veltman Conditions
- Alignment Limit

< 17 ▶

→ ∃ → < ∃ →</p>

SQC

3

- Introduction
- Veltman Conditions
- Alignment Limit
- Reverse Alignment Limit

< 67 ▶

Э

- Introduction
- Veltman Conditions
- Alignment Limit
- Reverse Alignment Limit
- Wrong Sign Limit

Э

-

- Introduction
- Veltman Conditions
- Alignment Limit
- Reverse Alignment Limit
- Wrong Sign Limit
- Diphoton Decay Width

Э

Motivations for 2HDMs:

DAE-BRNS (IITM)

Physical Higgs masses from VCs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

୬ < ୍ର 4 / 33

3

Motivations for 2HDMs:

• 2HDM is one of the simplest extensions of **SM** Physics. 2HDM is embedded in **MSSM** and **SUSY**.

ヨト・イヨ

Motivations for 2HDMs:

- 2HDM is one of the simplest extensions of SM Physics. 2HDM is embedded in MSSM and SUSY.
- The extended scalar sector provides scope for viable dark matter candidates and CP violating terms to explain baryon asymmetry.

SU(2) complex scalar doublets

DAE-BRNS (IITM)

Physical Higgs masses from VCs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 2

590

SU(2) complex scalar doublets

$$\Phi_a = \begin{pmatrix} w_a^+(x) \\ \frac{(v_a + h_a(x) + iz_a(x))}{\sqrt{2}} \end{pmatrix}; \qquad a = 1, 2$$

DAE-BRNS (IITM)

< □ > < ⊇ > < ⊇ >
 12th December, 2018

3

590

SU(2) complex scalar doublets

$$\Phi_a = \begin{pmatrix} w_a^+(x) \\ \frac{(v_a + h_a(x) + iz_a(x))}{\sqrt{2}} \end{pmatrix}; \quad a = 1, 2$$
$$\tan \beta = \frac{v_2}{v_1}, \quad v = \sqrt{v_1^2 + v_2^2} = 246 \,\text{GeV}$$

- 2

SU(2) complex scalar doublets

$$\Phi_a = \begin{pmatrix} w_a^+(x) \\ \frac{(v_a + h_a(x) + iz_a(x))}{\sqrt{2}} \end{pmatrix}; \qquad a = 1, 2$$

$$\tan \beta = \frac{v_2}{v_1}, \qquad v = \sqrt{v_1^2 + v_2^2} = 246 \,\mathrm{GeV}$$

Obtaining the mass eigenstates

The physical Higgs fields and the Goldstone bosons are hence obtained:

SU(2) complex scalar doublets

$$\Phi_a = \begin{pmatrix} w_a^+(x) \\ \frac{(v_a + h_a(x) + iz_a(x))}{\sqrt{2}} \end{pmatrix}; \qquad a = 1, 2$$

$$\tan \beta = \frac{v_2}{v_1}, \qquad v = \sqrt{v_1^2 + v_2^2} = 246 \,\mathrm{GeV}$$

Obtaining the mass eigenstates

The physical Higgs fields and the Goldstone bosons are hence obtained:

$$\left(\begin{array}{c} \omega^{\pm} \\ \xi^{\pm} \end{array}\right) = \left(\begin{array}{cc} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{array}\right) \left(\begin{array}{c} w_{1}^{\pm} \\ w_{2}^{\pm} \end{array}\right).$$

SU(2) complex scalar doublets

$$\Phi_a = \begin{pmatrix} w_a^+(x) \\ \frac{(v_a+h_a(x)+iz_a(x))}{\sqrt{2}} \end{pmatrix}; \qquad a = 1, 2$$

$$\tan \beta = \frac{v_2}{v_1}, \qquad v = \sqrt{v_1^2 + v_2^2} = 246 \,\text{GeV}$$

Obtaining the mass eigenstates

The physical Higgs fields and the Goldstone bosons are hence obtained:

$$\begin{pmatrix} \omega^{\pm} \\ \xi^{\pm} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} w_{1}^{\pm} \\ w_{2}^{\pm} \end{pmatrix},$$
$$\begin{pmatrix} \zeta \\ A \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix},$$

SU(2) complex scalar doublets

$$\tan \beta = \frac{v_2}{v_1}, \qquad v = \sqrt{v_1^2 + v_2^2} = 246 \,\text{GeV}$$

Obtaining the mass eigenstates

The physical Higgs fields and the Goldstone bosons are hence obtained:

$$\begin{pmatrix} \omega^{\pm} \\ \xi^{\pm} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} w_{1}^{\pm} \\ w_{2}^{\pm} \end{pmatrix},$$

$$\begin{pmatrix} \zeta \\ A \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix},$$

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} h_{1} \\ h_{2} \end{pmatrix}.$$
Physical Higgs masses from VCs 12th December, 2018 5 / 3

DAE-BRNS (IITM)

Global U(1) symmetry imposed to avoid Flavour Changing Neutral Currents.

Only those fields that transform under U(1) symmetry are shown below:

Global U(1) symmetry imposed to avoid Flavour Changing Neutral Currents.

Only those fields that transform under U(1) symmetry are shown below:

The U(1) symmetry

- Type I: $\Phi_1 \rightarrow \exp{(i\theta)}\Phi_1$;
- Type II: $\Phi_1 \to \exp{(i\theta)} \Phi_1, d_B^i \to \exp{(-i\theta)} d_B^i, e_B^i \to \exp{(-i\theta)} e_B^i;$
- Lepton Specific: $\Phi_1 \to \exp{(i\theta)} \Phi_1, e_B^i \to \exp{(-i\theta)} e_B^i$;
- Flipped: $\Phi_1 \to \exp{(i\theta)} \Phi_1, d_B^i \to \exp{(-i\theta)} d_B^i$

The scalar potential under the U(1) symmetry

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

→ @ → ★ 注 → ★ 注 → … 注

SQA

The scalar potential under the U(1) symmetry

$$V = \lambda_1 (\Phi_1^{\dagger} \Phi_1 - \frac{v_1^2}{2})^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2 - \frac{v_2^2}{2})^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 - \frac{v_1^2 + v_2^2}{2})^2 + \lambda_4 ((\Phi_1^{\dagger} \Phi_1)(\Phi_2^{\dagger} \Phi_2) - (\Phi_1^{\dagger} \Phi_2)(\Phi_2^{\dagger} \Phi_1)) + \lambda_5 |\Phi_1^{\dagger} \Phi_2 - \frac{v_1 v_2}{2}|^2$$

The term, $\lambda_5 v_1 v_2 \Re(\Phi_1^{\dagger} \Phi_2)$ softly breaks the U(1) symmetry.

DAE-BRNS (IITM)

12th December, 2018

500

The scalar potential under the U(1) symmetry

$$\begin{split} V &= \lambda_1 (\Phi_1^{\dagger} \Phi_1 - \frac{v_1^2}{2})^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2 - \frac{v_2^2}{2})^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 - \frac{v_1^2 + v_2^2}{2})^2 \\ &+ \lambda_4 ((\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) - (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)) \\ &+ \lambda_5 |\Phi_1^{\dagger} \Phi_2 - \frac{v_1 v_2}{2}|^2 \end{split}$$

The term, $\lambda_5 v_1 v_2 \Re(\Phi_1^{\dagger} \Phi_2)$ softly breaks the U(1) symmetry.

The 2HDM Yukawa Lagrangian

DAE-BRNS (IITM)

The scalar potential under the U(1) symmetry

$$\begin{split} V &= \lambda_1 (\Phi_1^{\dagger} \Phi_1 - \frac{v_1^2}{2})^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2 - \frac{v_2^2}{2})^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 - \frac{v_1^2 + v_2^2}{2})^2 \\ &+ \lambda_4 ((\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) - (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)) \\ &+ \lambda_5 |\Phi_1^{\dagger} \Phi_2 - \frac{v_1 v_2}{2}|^2 \end{split}$$

The term, $\lambda_5 v_1 v_2 \Re(\Phi_1^{\dagger} \Phi_2)$ softly breaks the U(1) symmetry.

The 2HDM Yukawa Lagrangian

$$\mathcal{L}_Y = \sum_{i=1,2} \left[-\bar{l}_L \Phi_i G_e^i e_R - \bar{Q}_L \tilde{\Phi}_i G_u^i u_R - \bar{Q}_L \Phi_i G_d^i d_R + h.c. \right]$$

DAE-BRNS (IITM)

Physical Higgs masses from VCs

The Veltman Conditions

Cancelling of the quadratic divergences of the 2HDM gives rise to the below mentioned four Veltman conditions. [C. Newton and T. T. Wu, Z. Phys. C 62, 253 (1994).]

10 M

The Veltman Conditions

Cancelling of the quadratic divergences of the 2HDM gives rise to the below mentioned four Veltman conditions. [C. Newton and T. T. Wu, Z. Phys. C 62, 253 (1994).]

The four VCs

$$\begin{split} 2TrG_e^1G_e^{1\dagger} + 6TrG_u^{1\dagger}G_u^1 + 6TrG_d^1G_d^{1\dagger} &= \frac{9}{4}g^2 + \frac{3}{4}g'^2 + 6\lambda_1 + 10\lambda_3 + \lambda_4 + \lambda_5 \\ 2TrG_e^2G_e^{2\dagger} + 6TrG_u^{2\dagger}G_u^2 + 6TrG_d^2G_d^{2\dagger} &= \frac{9}{4}g^2 + \frac{3}{4}g'^2 + 6\lambda_2 + 10\lambda_3 + \lambda_4 + \lambda_5 \\ 2TrG_e^1G_e^{2\dagger} + 6TrG_u^{1\dagger}G_u^2 + 6TrG_d^1G_d^{2\dagger} &= 0 \\ 2TrG_e^2G_e^{1\dagger} + 6TrG_u^{2\dagger}G_u^1 + 6TrG_d^2G_d^{1\dagger} &= 0 \end{split}$$

• = • •

The Veltman Conditions

Cancelling of the quadratic divergences of the 2HDM gives rise to the below mentioned four Veltman conditions. [C. Newton and T. T. Wu, Z. Phys. C 62, 253 (1994).]

The four VCs

$$\begin{aligned} 2TrG_e^1G_e^{1\dagger} + 6TrG_u^{1\dagger}G_u^1 + 6TrG_d^1G_d^{1\dagger} &= \frac{9}{4}g^2 + \frac{3}{4}g'^2 + 6\lambda_1 + 10\lambda_3 + \lambda_4 + \lambda_5 \\ 2TrG_e^2G_e^{2\dagger} + 6TrG_u^{2\dagger}G_u^2 + 6TrG_d^2G_d^{2\dagger} &= \frac{9}{4}g^2 + \frac{3}{4}g'^2 + 6\lambda_2 + 10\lambda_3 + \lambda_4 + \lambda_5 \\ 2TrG_e^1G_e^{2\dagger} + 6TrG_u^{1\dagger}G_u^2 + 6TrG_d^1G_d^{2\dagger} &= 0 \end{aligned}$$

$$2TrG_e^2 G_e^{1\dagger} + 6TrG_u^{2\dagger} G_u^1 + 6TrG_d^2 G_d^{1\dagger} = 0$$

Hence the Naturalness condition.

DAE-BRNS (IITM)

.

< □ > < 同 >

General results involving the Yukawa couplings and fermion masses:

By diagonalising the Yukawa matrices we obtain the following results.

→ < ≥ > < ≥ >

12th December, 2018

General results involving the Yukawa couplings and fermion masses:

By diagonalising the Yukawa matrices we obtain the following results.

$$Tr[G_{1f}^{\dagger}G_{1f}] = \frac{2}{v^2 \cos^2 \beta} \sum m_f^2 ,$$
$$Tr[G_{2f}^{\dagger}G_{2f}] = \frac{2}{v^2 \sin^2 \beta} \sum m_f^2 .$$

where f stands for charged leptons, up-type quarks, or down-type quarks, and the sum is taken over generations.

12th December, 2018

		(11 - 1 - 1)
DALE	DIVING	
		(

Physical Higgs masses from VCs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

8 10 / 33

990

3

Scalar potential being bounded from below: [Ref:M.Sher, Phys.Rept. 179(1989)273]

DAE-BRNS (IITM) Physic

Physical Higgs masses from VCs

12th December, 2018

・ 戸 ト ・ 三 ト ・ 三 ト

ッへで 10 / 33

Э

Scalar potential being bounded from below: [Ref:M.Sher, Phys.Rept. 179(1989)273]

$$\begin{split} \lambda_1+\lambda_3 &> 0, 2\lambda_3+\lambda_4+2\sqrt{(\lambda_1+\lambda_3)(\lambda_2+\lambda_3)}>0,\\ \lambda_2+\lambda_3 &> 0, 2\lambda_3+\lambda_5+2\sqrt{(\lambda_1+\lambda_3)(\lambda_2+\lambda_3)}>0. \end{split}$$

- (日本) (日本) (日本) 日本

12th December, 2018

SQA

Scalar potential being bounded from below: [Ref:M.Sher, Phys.Rept. 179(1989)273]

$$\begin{split} \lambda_1+\lambda_3 &> 0, 2\lambda_3+\lambda_4+2\sqrt{(\lambda_1+\lambda_3)(\lambda_2+\lambda_3)}>0,\\ \lambda_2+\lambda_3 &> 0, 2\lambda_3+\lambda_5+2\sqrt{(\lambda_1+\lambda_3)(\lambda_2+\lambda_3)}>0. \end{split}$$

Perturbative unitarity: [Ref:J.Maalampi, J.Sirkka and I.Vilja, Phys.Lett.B 265,371(1991)]

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

Scalar potential being bounded from below: [Ref:M.Sher, Phys.Rept. 179(1989)273]

$$\begin{split} \lambda_1 + \lambda_3 &> 0, 2\lambda_3 + \lambda_4 + 2\sqrt{(\lambda_1 + \lambda_3)(\lambda_2 + \lambda_3)} > 0, \\ \lambda_2 + \lambda_3 &> 0, 2\lambda_3 + \lambda_5 + 2\sqrt{(\lambda_1 + \lambda_3)(\lambda_2 + \lambda_3)} > 0. \end{split}$$

Perturbative unitarity: [Ref:J.Maalampi, J.Sirkka and I.Vilja, Phys.Lett.B 265,371(1991)]

$$\begin{split} |2\lambda_{3} - \lambda_{4} + 2\lambda_{5}| &\leq 16\pi, \\ |2\lambda_{3} + \lambda_{4}| &\leq 16\pi, \\ |2\lambda_{3} + \lambda_{4}| &\leq 16\pi, \\ |2\lambda_{3} + \lambda_{5}| &\leq 16\pi, \\ |2\lambda_{3} + 2\lambda_{4} - \lambda_{5}| &\leq 16\pi, \\ |3(\lambda_{1} + \lambda_{2} + 2\lambda_{3}) \pm \sqrt{9(\lambda_{1} - \lambda_{2})^{2} + (4\lambda_{3} + \lambda_{4} + \lambda_{5})^{2}}| &\leq 16\pi, \\ |(\lambda_{1} + \lambda_{2} + 2\lambda_{3}) \pm \sqrt{(\lambda_{1} - \lambda_{2})^{2} + (\lambda_{4} - \lambda_{5})^{2}}| &\leq 16\pi, \\ |(\lambda_{1} + \lambda_{2} + 2\lambda_{3}) \pm \sqrt{(\lambda_{1} - \lambda_{2})^{2} + (\lambda_{1} - \lambda_{2})}| &\leq 16\pi. \end{split}$$

Physical Higgs masses from VCs

The electroweak rho parameter

DAE-BRNS (IITM)

Physical Higgs masses from VCs
The electroweak rho parameter

$$\rho = \frac{m_W^2}{\cos \theta_w^2 m_Z^2}$$

DAE-BRNS (IITM)

Physical Higgs masses from VCs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ッへで 11 / 33

The electroweak rho parameter

$$\rho = \frac{m_W^2}{\cos\theta_w^2 m_Z^2}$$

Including new physics effects modifies this relation into

$$\rho = \frac{1}{1 - \delta\rho}$$

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

Sac

The electroweak rho parameter

$$\rho = \frac{m_W^2}{\cos\theta_w^2 m_Z^2}$$

Including new physics effects modifies this relation into

$$\rho = \frac{1}{1 - \delta\rho}$$

Recent bounds on $\delta\rho$ is $\delta\rho=-0.0002\pm0.0007$ [Particle Data Group Collaboration, K. Olive et al., C38 (2014)090001.].

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Alignment Limit

h as the SM Higgs

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

<ロ> <部> <部> <き> <き> <き> <き</p>

8 12 / 33

h as the SM Higgs

$$\sin(\beta - \alpha) \approx 1$$
$$\Rightarrow \beta - \alpha = \frac{\pi}{2}$$

DAE-BRNS (IITM)

Physical Higgs masses from VCs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

590

h as the SM Higgs

$$\sin(\beta - \alpha) \approx 1$$
$$\Rightarrow \beta - \alpha = \frac{\pi}{2}$$

• $h_{ff} = h_{ff,SM}$

•
$$h_{VV} = h_{VV,SM}$$

• $m_h = 125 \text{ GeV}$

DAE-BRNS (IITM)

12th December, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Relation between λ 's and the physical Higgs boson masses in Alignment limit

D A			
	-		
	 -		
		_	

Physical Higgs masses from VCs

12th December, 2018

Relation between λ 's and the physical Higgs boson masses in Alignment limit

[Ref: A.G.Akeroyd, A.Arhrib and E.M Naimi, Phys.Lett.B 490, 119(2000)[hep-ph/0006035]]

$$\begin{split} \lambda_1 &= \frac{1}{2v^2 c_{\beta}^2} m_H^2 - \frac{\lambda_5}{4} (\tan^2 \beta - 1) \,, \\ \lambda_2 &= \frac{1}{2v^2 s_{\beta}^2} m_H^2 - \frac{\lambda_5}{4} \left(\frac{1}{\tan^2 \beta} - 1 \right) \,, \\ \lambda_3 &= -\frac{1}{2v^2} (m_H^2 - m_h^2) - \frac{\lambda_5}{4} \,, \\ \lambda_4 &= \frac{2}{v^2} m_{\xi}^2 \,, \\ \lambda_5 &= \frac{2}{v^2} m_A^2 \,. \end{split}$$

12th December, 2018

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ()

Relation between λ 's and the physical Higgs boson masses in Alignment limit

[Ref: A.G.Akeroyd, A.Arhrib and E.M Naimi, Phys.Lett.B 490, 119(2000)[hep-ph/0006035]]

$$\begin{split} \lambda_1 &= \frac{1}{2v^2 c_{\beta}^2} m_H^2 - \frac{\lambda_5}{4} (\tan^2 \beta - 1) \,, \\ \lambda_2 &= \frac{1}{2v^2 s_{\beta}^2} m_H^2 - \frac{\lambda_5}{4} \left(\frac{1}{\tan^2 \beta} - 1 \right) \,, \\ \lambda_3 &= -\frac{1}{2v^2} (m_H^2 - m_h^2) - \frac{\lambda_5}{4} \,, \\ \lambda_4 &= \frac{2}{v^2} m_{\xi}^2 \,, \\ \lambda_5 &= \frac{2}{v^2} m_A^2 \,. \end{split}$$

For any 2HDM to be a perturbative quantum field theory at any scale one must impose the conditions that $|\lambda_i| \leq 4\pi \ \forall i$.

12th December, 2018

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ()

Veltman Condition (VC) 1 in Alignment limit

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

018 14 / 33

Veltman Condition (VC) 1 in Alignment limit

RHS of VC1:

 $6M_W^2 + 3M_Z^2 + m_H^2(3\tan^2\beta - 2) + 5m_h^2 + 2m_\xi^2 - \frac{3v^2}{2}\lambda_5\tan^2\beta$

Type of 2HDM	The corresponding LHS of VC 1
Type-I	0
$G_{1e} = 0; G_{1d} = 0; G_{1u} = 0$	
Type-II	$4[(m_e^2 + m_\mu^2 + m_\tau^2)]$
$G_{1u} = 0$	$+3(m_d^2+m_s^2+m_b^2)]\sec^2\beta$
Lepton Specific	$4(m_e^2 + m_\mu^2 + m_\tau^2)\sec^2\beta$
$G_{1d} = 0; G_{1u} = 0$	
Flipped 2HDM	$12(m_d^2 + m_s^2 + m_b^2)\sec^2\beta$
$G_{1e} = 0; G_{1u} = 0$	

・ロト ・ 画 ・ 画 ・ 画 ・ 今々で

Veltman Condition (VC) 2 in Alignment limit

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

18 15 / 33

Veltman Condition (VC) 2 in Alignment limit

$6M_W^2 + 3M_Z^2 + m_H^2(\frac{3}{\tan^2\beta} - 2) + 5m_h^2 + 2m_\xi^2 - \frac{3v^2}{2}\frac{\lambda_5}{\tan^2\beta}$			
Type of 2HDM	The corresponding LHS of VC 2		
Type-I	$4[(m_e^2 + m_\mu^2 + m_\tau^2)$		
	$+3(m_u^2+m_c^2+m_t^2)$		
	$+3(m_d^2+m_s^2+m_b^2)]\csc^2\beta$		
Type-II	$12(m_u^2 + m_c^2 + m_t^2)\csc^2\beta$		
$G_{2e} = 0; G_{2d} = 0$			
Lepton Specific	$12[(m_u^2 + m_c^2 + m_t^2)]$		
$G_{2e} = 0$	$+(m_d^2+m_s^2+m_b^2)]\csc^2\beta$		
Flipped 2HDM	$4[(m_e^2 + m_\mu^2 + m_\tau^2)$		
$G_{2d} = 0$	$+3(m_u^2+m_c^2+m_t^2)]\csc^2\beta$		

DAE-BRNS (IITM)

The allowed mass range plot for the physical Higgs bosons

DAE-BRNS (IITM)

Physical Higgs masses from VCs

December, 2018

Results for SM-like limit

D A		D N 1/	- /I	
	ь к	I DO INTO		 ~ ~

Physical Higgs masses from VCs

12th December, 2018

э. 17 / 33

 $\bullet\,$ The range of m_H lies between 450 GeV to 620 GeV

Sac

- The range of m_H lies between 450 GeV to 620 GeV
- The range of m_{ξ} lies between 550 GeV to 700 GeV

< 一型

- The range of m_H lies between 450 GeV to 620 GeV
- The range of m_{ξ} lies between 550 GeV to 700 GeV
- $\bullet\,$ The above mass ranges vary between a few ${\rm GeV}$ for the various 2HDMs.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The range of m_H lies between 450 GeV to 620 GeV
- The range of m_{ξ} lies between 550 GeV to 700 GeV
- $\bullet\,$ The above mass ranges vary between a few ${\rm GeV}$ for the various 2HDMs.
- Direct searches have shown that $m_{\xi} > 100~{\rm GeV}$ and our results agree with this lower bound. [K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014]

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

- The range of m_H lies between 450 GeV to 620 GeV
- The range of m_{ξ} lies between 550 GeV to 700 GeV
- $\bullet\,$ The above mass ranges vary between a few ${\rm GeV}$ for the various 2HDMs.
- Direct searches have shown that $m_{\xi} > 100~{
 m GeV}$ and our results agree with this lower bound. [K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014]
- The degeneracy in the masses of the physical Higgs bosons for large enough $\tan\beta$ is evident from our plots.

Reverse Alignment Limit

H as the SM Higgs

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

・ 同 ト ・ ヨ ト ・ ヨ ト

୬ ୯.୯ 18 / 33

Э

H as the SM Higgs

 $\cos(\beta - \alpha) \approx 1$ $\Rightarrow \beta \approx \alpha$

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

H as the SM Higgs

$$\cos(\beta - \alpha) \approx 1$$
$$\Rightarrow \beta \approx \alpha$$

- $H_{ff} = h_{ff,SM}$
- $H_{VV} = h_{VV,SM}$
- $m_H = 125 \text{ GeV}$

▲御 ▶ ▲ 唐 ▶ ▲ 唐 ▶ 二 唐

12th December, 2018

Sac

The allowed mass range plot for the physical Higgs bosons

DAE-BRNS (IITM)

Physical Higgs masses from VCs

Results for Reverse alignment limit

DAL-DIVING (ILLIVI)	DAE-	BRNS	(IITM)
---------------------	------	------	--------

Physical Higgs masses from VCs

< □ > < □ > < □ > < ≡ > < ≡ >
 12th December, 2018

3

990

As seen from the plots in figure we find that there is no common region of intersection which obeys all the constraints. Thus *Reverse alignment limit* is not a consistent limit with the *Naturalness condition* for 2HDMs.

Wrong Sign Limit

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

Region of 2HDM parameter space where,

•
$$\frac{h\overline{D}D}{hVV} < 0$$
 or,

•
$$\frac{h\overline{U}U}{hVV} < 0$$

Here *h* is the SM-like Higgs. [P. M. Ferreira *et al.* arxiv: 1410.1926v1 [hep-ph].]

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 - の Q ()

Type-II Higgs-fermion Yukawa couplings normalized w.r.t. SM:

Type-II Higgs-fermion Yukawa couplings normalized w.r.t. SM:

$$h\overline{D}D : -\frac{\sin\alpha}{\cos\beta} = -\sin(\beta + \alpha) + \cos(\beta + \alpha)\tan\beta$$
$$h\overline{U}U : \frac{\cos\alpha}{\sin\beta} = \sin(\beta + \alpha) + \cos(\beta + \alpha)\cot\beta$$

Type-II Higgs-fermion Yukawa couplings normalized w.r.t. SM:

$$h\overline{D}D : -\frac{\sin\alpha}{\cos\beta} = -\sin(\beta + \alpha) + \cos(\beta + \alpha)\tan\beta$$
$$h\overline{U}U : \frac{\cos\alpha}{\sin\beta} = \sin(\beta + \alpha) + \cos(\beta + \alpha)\cot\beta$$

•
$$\sin(\beta + \alpha) = 1 \Rightarrow h\overline{D}D = -1$$
 and $h\overline{U}U = +1$.

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

Type-II Higgs-fermion Yukawa couplings normalized w.r.t. SM:

$$h\overline{D}D : -\frac{\sin\alpha}{\cos\beta} = -\sin(\beta + \alpha) + \cos(\beta + \alpha)\tan\beta$$
$$h\overline{U}U : \frac{\cos\alpha}{\sin\beta} = \sin(\beta + \alpha) + \cos(\beta + \alpha)\cot\beta$$

- $\sin(\beta + \alpha) = 1 \Rightarrow h\overline{D}D = -1$ and $h\overline{U}U = +1$.
- Wrong Sign + Alignment limit $\Rightarrow \sin(\beta + \alpha) \sim 1$ and $\sin(\beta \alpha) \sim 1$.

・ロット 4 回 > ・ 4 回 > ・ 4 回 > ・ 4 回 >

Type-II Higgs-fermion Yukawa couplings normalized w.r.t. SM:

$$h\overline{D}D : -\frac{\sin\alpha}{\cos\beta} = -\sin(\beta + \alpha) + \cos(\beta + \alpha)\tan\beta$$
$$h\overline{U}U : \frac{\cos\alpha}{\sin\beta} = \sin(\beta + \alpha) + \cos(\beta + \alpha)\cot\beta$$

- $\sin(\beta + \alpha) = 1 \Rightarrow h\overline{D}D = -1$ and $h\overline{U}U = +1$.
- Wrong Sign + Alignment limit $\Rightarrow \sin(\beta + \alpha) \sim 1$ and $\sin(\beta \alpha) \sim 1$.
- The wrong sign limit approaches the alignment limit for $\tan\beta\approx 17$ [P. M. Ferreira et al. arxiv: 1410.1926v1 [hep-ph].]

The allowed mass range plot for $\tan\beta$ 10, 17, 20 and 30 respectively

DAE-BRNS (IITM)

Physical Higgs masses from VCs

Э 12th December, 2018 23 / 33

Results for Wrong sign limit and alignment limit

DAE-BRNS (IITM)

Physical Higgs masses from VCs

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

୬ < ୍ 24 / 33

Results for Wrong sign limit and alignment limit

• For $\tan \beta = 17$ the range of physical Higgs bosons are:

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

200
Results for Wrong sign limit and alignment limit

- $\bullet~{\rm For}~{\rm tan}\,\beta=17$ the range of physical Higgs bosons are:
 - $m_H \approx$ (250, 330) GeV

→ □ → □ → ↓ □ →

Results for Wrong sign limit and alignment limit

- For $\tan\beta=17$ the range of physical Higgs bosons are:
 - $m_H \approx$ (250, 330) GeV
 - $m_{\xi} \approx$ (260, 310) GeV.

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

Results for Wrong sign limit and alignment limit

- For $\tan\beta=17$ the range of physical Higgs bosons are:
 - $m_H \approx$ (250, 330) GeV
 - $m_{\xi} \approx$ (260, 310) GeV.
- \bullet At higher values of $\tan\beta$, both ranges become narrower and move down on the mass scale.

Diphoton Decay width

Diphoton decay width in Wrong sign and Alignment limits

DAE-BRNS	(IITM)
----------	--------

Diphoton Decay width

Diphoton decay width in Wrong sign and Alignment limits

$$\begin{split} \Gamma(h \to \gamma \gamma) &= \frac{G_{\mu} \alpha^2 m_h^2}{128 \sqrt{2} \pi^3} |\sum_f N_c Q_f^2 g_{hff} A_{1/2}^h(\tau_f) + g_{hVV} A_1^h(\tau_W) \\ &+ \frac{m_W^2 \lambda_{h\xi^+\xi^-}}{2c_W^2 M_{\ell^\pm}^2} A_0^h(\tau_{\xi^\pm}) |^2 \end{split}$$

Diphoton decay width in Wrong sign and Alignment limits

$$\begin{split} \Gamma(h \to \gamma \gamma) &= \frac{G_{\mu} \alpha^2 m_h^3}{128 \sqrt{2} \pi^3} |\sum_f N_c Q_f^2 g_{hff} A_{1/2}^h(\tau_f) + g_{hVV} A_1^h(\tau_W) \\ &+ \frac{m_W^2 \lambda_{h\xi^+\xi^-}}{2c_W^2 M_{\xi^\pm}^2} A_0^h(\tau_{\xi^\pm}) |^2 \end{split}$$

where, $g_{htt} = \frac{\cos \alpha}{\sin \beta}$, $g_{hbb} = -\frac{\sin \alpha}{\cos \beta}$ and $g_{hWW} = \sin(\beta - \alpha)$ and

$$\lambda_{h\xi^+\xi^-} = \cos 2\beta \sin(\beta + \alpha) + 2c_W^2 \sin(\beta - \alpha)$$
$$= \lambda_{hAA} + 2c_W^2 g_{hVV}$$

where $c_W = \cos \theta_W$, θ_W being the Weinberg angle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のの⊙

Diphoton decay width contd...

The amplitudes A_i at lowest order for the spin 1, spin $\frac{1}{2}$ and spin 0 particle contributions are given by:

$$\begin{aligned} A_{1/2}^{h} &= -2\tau [1 + (1 - \tau)f(\tau)] \\ A_{1}^{h} &= 2 + 3\tau + 3\tau (2 - \tau)f(\tau) \\ A_{0}^{h} &= \tau [1 - \tau f(\tau)] \end{aligned}$$

Diphoton decay width contd...

The amplitudes A_i at lowest order for the spin 1, spin $\frac{1}{2}$ and spin 0 particle contributions are given by:

$$\begin{aligned} A_{1/2}^{h} &= -2\tau [1 + (1 - \tau)f(\tau)] \\ A_{1}^{h} &= 2 + 3\tau + 3\tau (2 - \tau)f(\tau) \\ A_{0}^{h} &= \tau [1 - \tau f(\tau)] \end{aligned}$$

$$\tau_x = 4m_x^2/m_h^2$$

and

$$f(\tau) = \begin{cases} \arcsin^2 \sqrt{1/\tau}, & \tau \ge 1\\ -\frac{1}{4} \left[\log \frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}} - i\pi \right]^2, & \tau < 1 \end{cases}$$

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

Diphoton Decay

Plot for diphoton decay in alignment and wrong sign limits

Physical Higgs masses from VCs

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Diphoton Decay

Plot for diphoton decay in alignment and wrong sign limits

DAE-BRNS (IITM)

12th December, 2018

DAE-BRNS (IITM)

Physical Higgs masses from VCs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

28 / 33

590

• The relative diphoton decay width increases as m_A increases.

化原因 化原因

- The relative diphoton decay width increases as m_A increases.
- Maximum value of about 6% as compared to the SM value.

- The relative diphoton decay width increases as m_A increases.
- Maximum value of about 6% as compared to the SM value.
- Throw light on BSM Physics.

Thank you!

DAE-BRNS (IITM)

Physical Higgs masses from VCs

・ロト ・ 一下・ ・ ヨト ・ ヨト 12th December, 2018

э. 29 / 33

Appendix : A

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

・ロト ・日・・日・・日・・ つくぐ

Alignment and Reverse Alignment limits

$$\left(\begin{array}{c}H^{0}\\R\end{array}\right) = \left(\begin{array}{cc}c_{\beta} & s_{\beta}\\-s_{\beta} & c_{\beta}\end{array}\right) \left(\begin{array}{c}h_{1}\\h_{2}\end{array}\right)$$

 ${\cal H}^0$ has exactly the Standard Model Higgs couplings with the fermions and gauge bosons.

$$h = \sin(\beta - \alpha)H^0 + \cos(\beta - \alpha)R$$

Thus in order for h to be the Higgs boson of the Standard Model, we require $\sin(\beta - \alpha) \approx 1 \Rightarrow (\beta - \alpha) \approx \frac{\pi}{2}$, which has been called the SM-like or alignment limit.

$$H = H^0 \cos(\beta - \alpha) - R \sin(\beta - \alpha)$$

Thus in order for H to be the Higgs boson of the Standard Model, we require $\cos(\beta - \alpha) \approx 1 \Rightarrow \beta \approx \alpha \text{ or } \beta \approx \pi + \alpha$, which is the reverse alignment limit. NB: $0 \leq \beta \leq \frac{\pi}{2}$ and $-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のの⊙

Appendix : B

DAE-BRNS (IITM)

・ロト ・日・・日・・日・・ つくぐ 12th December, 2018

Yukawa Couplings for Different 2HDMs

2HDMs	$h\bar{U}U$	$h\bar{D}D$	$H\bar{U}U$	$H\bar{D}D$
Type I	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$
Type II	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$
Lepton Specific	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$
Flipped	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Appendix : C

DAE-BRNS (IITM)

Physical Higgs masses from VCs

12th December, 2018

・ロト ・日・・日・・日・・ つくぐ

Wrong Sign and Reverse Alignment Limit

HVV is $\cos(\beta - \alpha)$ times the corresponding SM value. In the convention where $\cos(\beta - \alpha) \ge 0$, the HVV couplings in the 2HDM are always non-negative. For type-II and Flipped 2HDMs:

$$\begin{split} H\bar{D}D: & \frac{\cos\alpha}{\cos\beta} & = & \cos(\beta+\alpha) + \sin(\beta+\alpha)\tan\beta \,, \\ H\bar{U}U: & \frac{\sin\alpha}{\sin\beta} & = & -\cos(\beta+\alpha) + \sin(\beta+\alpha)\cot\beta \,. \end{split}$$

When $\cos(\beta + \alpha) = -1$, the $H\bar{D}D = -1$ and $H\bar{U}U = +1$ normalized w.r.t. SM. Thus in this case, when the reverse alignment limit is taken in conjunction with the wrong sign limit, we have $\alpha \approx \beta \approx \frac{\pi}{2}$. In this case there is no common region of intersection when the Veltman conditions are considered in conjunction with other constraints. When $\cos(\beta + \alpha) = 1$, the $H\bar{U}U = -1$ and $H\bar{D}D = +1$ normalized w.r.t. SM. In this limiting case, $\cos(\beta - \alpha) = \cos 2\beta$, which implies that the wrong-sign $H\bar{U}U$ couplings can only be achieved for $\tan \beta < 1$ for the type II and Hipped 2HDMs. In the type-I and lepton specific 2HDMs, both the $H\bar{D}D$ and $H\bar{U}U$ couplings are given by $\frac{\sin \alpha}{\sin \beta}$. Thus, for $\cos(\beta + \alpha) = 1$, both the normalized $H\bar{D}D$ and $H\bar{U}U$ couplings are equal to -1, which is only possible if $\tan \beta < 1$. Since $\tan \beta > 1$, we see that the wrong-sign Yukawa coupling is incompatible with the reverse alignment limit in all of the four types of 2HDMs.

Appendix : D

・ロト ・日・・日・・日・・ つくぐ

Wrong Sign and Alignment Limit

hVV is $\sin(\beta - \alpha)$ times the corresponding SM value. Then in the convention where $\sin(\beta - \alpha) \ge 0$, the hVV couplings in the 2HDM are always non-negative. For type-II and Flipped 2HMDs:

$$h\bar{D}D: -\frac{\sin\alpha}{\cos\beta} = -\sin(\beta+\alpha) + \cos(\beta+\alpha)\tan\beta, \qquad (1)$$

$$h\bar{U}U: \frac{\cos\alpha}{\sin\beta} = \sin(\beta+\alpha) + \cos(\beta+\alpha)\cot\beta. \qquad (2)$$

When $\sin(\beta + \alpha) = 1$, the $h\bar{D}D = -1$ and $h\bar{U}U = +1$ normalized w.r.t. SM. In this limiting case, $\sin(\beta - \alpha) = -\cos 2\beta$, which implies that the wrong-sign $h\bar{D}D$ Yukawa coupling can only be achieved for values of $\tan \beta > 1$.

When $\sin(\beta + \alpha) = -1$, the $h\bar{U}U = -1$ and $h\bar{D}D = +1$ normalized w.r.t. SM. Then $\sin(\beta - \alpha) = \cos 2\beta$, which implies that the wrong-sign $h\bar{U}U$ couplings can occur only if $\tan \beta < 1$. In the type-I and lepton specific 2HDM, both the $h\bar{D}D$ and $h\bar{U}U$ couplings are given by $\frac{\cos \alpha}{\sin \beta}$. Thus for $\sin(\beta + \alpha) = -1$, both the normalized $h\bar{D}D$ and $h\bar{U}U$ couplings are equal to -1, which is only possible if $\tan \beta < 1$. Thus realistically only the $h\bar{D}D$ coupling of the type-II and flipped 2HDM can be of the wrong sign, since $\tan \beta > 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のの⊙