

Search for Higgs boson decaying to a pair of new light bosons in the final state with pair of muons and b-quarks at $\sqrt{s} = 13$ TeV

(h → aa → $\mu\mu bb$)

By

Aashaq Shah, Ashok Kumar

University of Delhi, India

On behalf of the CMS Collaboration

Outline

- Motivation
- MC Simulations and Data
- Signal and Background Models
- Systematics
- Results and Summary

Why low mass?

Is the h (125 GeV) really a SM Higgs boson?

Some BSM theories predict additional low-mass (<125 GeV) scalars/pseudoscalars:

- General 2HDM :
 - 2 Higgs doublets (4 types) → 5 Higgs bosons: h, H, a, H[±]
 - compatible with a 125 GeV SM-like scalar (h or H) + a light Higgs Boson (a)
- 2HDM+S:
 - Special case NMSSM
 - > 2Higgs doublets + 1 singlet \rightarrow 7 Higgs bosons : h_1 , h_2 , h_3 , a_1 , a_2 , H^{\pm}
 - Compatible with a 125 GeV SM-like scalar (h₁ or h₂) + a mostly "singlet-like" light Higgs Boson (a₁ or h₁)

CMS low-mass searches

Exotic decays of Higgs Boson, $h \rightarrow aa$ are searched in various final states:

- μμττ, bbττ, (CMS PAS HIG-17-029, CMS PAS HIG-17-024)
- μμμμ, bbbb, ττττ (Ongoing)
- μμbb, CMS PAS HIG-18-003

CMS low-mass searches

why μμbb final state?

- 4b final state expected to occur with higher number of events but has challenging backgrounds
- 4μ final state clean but very rare
- μμbb final state compromise between bbbb and μμμμ states
 - $a \rightarrow \mu\mu$ has a clear peak
 - $a \rightarrow bb$: large BR in many parts of the parameter space
- Particularly very large in the context of the NMSSM [1]
- Search may provide better sensitivity in the long run [2]

[1] Phy. Rev. D 90, 075004 (2014)
[2] JHEP 1308 (2013) 019, [arXiv:1303.2113]

Simulated Signal Samples

Mass range, $20 < m_a < 62.5 \text{ GeV}$

Model Used

- NMSSMHET used in MadGraph_aMCatNLO, generated signal at LO Mechanism
- Mechanism
 - ggF with σ_{qqF} = 48.58 pb
 - VBF with $\sigma_{\text{VBE}} = 3.78 \text{ pb}$

Benchmark for the expected yield

- BR(h \rightarrow aa) = 10%
- BR(aa $\rightarrow \mu\mu$ bb) = 1.7×10⁻³ in 2HDM+S Type 3 {Predicted as per [Ref]}

To estimate the contribution from $\mu\mu\tau\tau$ and $\tau\tau bb$, samples with $\mu\mu\tau\tau$ and $\tau\tau bb$ final state were also generated

Sample name (Process)	"a" mass (GeV) points Simulated
h → aa → 2μ2b (ggF)	20, 25, 30, 35, 40, 45, 50, 55, 60
h → aa → 2μ2b (VBF)	20, 30, 40, 60
h → aa → 2b2τ (ggF)	20, 30, 60
h → aa → 2μ2τ (ggF)	20, 30, 60

[Ref] D. Curtin et al., Phys. Rev. D 90 (2014) 075004

Dataset-2016

Preselection and Optimization

2 Opposite sign Muons:

Pt > 20/9 GeV (Optimized)

 $|\eta| \le 2.4$

Tight ID Rel. Iso. < 0.15

 $15 \text{ GeV} < m_{\mu\mu} < 70 \text{ GeV}$

At least one good primary vertex

At least two jets:

Pt > 20/15 GeV (Optimized)

 $|\eta| < 2.5$

 $\Delta R(\mu, jet) > 0.4$

b-tagging CSVv2:

One loose/One tight(Optimized)

Additional Optimization:

- E_⊤^{miss} < 60 GeV
- Exploit features in signal such as χ^2 with $\chi^2 < 5$

$$\chi_{total}^{2} = \frac{\left(m_{bb} - m_{\mu\mu}\right)^{2}}{\sigma_{bb}^{2}} + \frac{\left(m_{\mu\mu bb} - 125\right)^{2}}{\sigma_{h}^{2}}$$

Distributions at Preselection

Signal and Background Yields

Process	$\mu^+\mu^-$ b \overline{b} selection	Final selection
Top (tt̄, single top quark)	33730 ± 120	198 ± 9
Drell–Yan	5237 ± 77	399 ± 21
Diboson	51 ± 4	1 ± 0.1
Total expected background	39015 ± 140	598 ± 23
Data	36360	610
Signal for $\sigma_{\rm h} imes \mathcal{B} \approx 8 { m fb}$		
$m_{\rm a_1}=20~{ m GeV}$	$14.0 \pm\ 0.1$	6.0 ± 0.1
$m_{\rm a_1} = 40 \; {\rm GeV}$	$14.8 \pm\ 0.1$	7.5 ± 0.1
$m_{\rm a_1} = 60 \; {\rm GeV}$	$16.7 \pm\ 0.1$	10.1 ± 0.1
-		

Contribution from other signals

The μμττ and ττbb signals can contribute in our selection

- $\tau\tau bb$ with $\tau\rightarrow\mu$ decays
 - Leads to a displaced $\mu\mu$ mass w.r.t the $\mu\mu bb$ signal : negligible effect on signal yield
- $\mu\mu\tau\tau$ with a possibility for τ -b misidentification
 - The contribution is small at the benchmark

Process	$m_{\rm a_1}=20{ m GeV}$	$m_{a_1} = 40 \mathrm{GeV}$	$m_{\rm a_1}=60{ m GeV}$
μμττ	0.017 ± 0.005	0.051 ± 0.009	0.084 ± 0.011
ττbb	0.304 ± 0.103	0.280 ± 0.086	0.448 ± 0.114

Signal Model

- Signal Shape derived from simulation
- Combination of Voigtion and a Crystal ball profiles

SignalModel
$$S(m_{\mu\mu}|f_{,}p_{V},p_{CB}) \equiv f.V(m_{\mu\mu}|p_{V}+(1-f).CB(m_{\mu\mu}|p_{CB}))$$

Where, VoigtionFunction $V(m_{\mu\mu}|p_V) \equiv V(m_{\mu\mu},\sigma,\gamma) = G(m_{\mu\mu},\sigma,m_a) * L(m_{\mu\mu},\gamma,m_a)$

Where
$$G(m_{\mu\mu},\sigma,m_a) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{\left(m_{\mu\mu}-a\right)^2}{2\sigma^2}}$$

$$L\left(m_{\mu\mu},\gamma,m_{a}\right) = \frac{\gamma}{\pi\left(\left(m_{\mu\mu} - m_{a}\right)^{2} + \gamma^{2}\right)}$$

$$CrystallBallFunction \quad CB\left(m_{\mu\mu}|p_{CB}\right) \;\equiv\; CB\left(m_{\mu\mu},n,\sigma_{CB},\alpha,m_{a}\right) \;=\; N \cdot e^{-\left[m_{\mu\nu}-m_{a}\right]^{2}/2\sigma_{CB}^{2}} \quad for \quad \frac{m_{\mu\mu}-m_{a}}{\sigma_{CB}} \;>\; -\alpha$$

$$N \cdot \left(A \cdot \left(B - \frac{m_{\mu\mu}-m_{a}}{\sigma_{CB}}\right)^{-n}\right) \quad for \quad \frac{m_{\mu\mu}-m_{a}}{\sigma_{CB}} \leqslant -\alpha$$

Resolutions have been expressed as:

$$\sigma_{\rm v} = \sigma_{\rm v,0} + \alpha \, m_{\mu\mu},$$

$$\sigma_{\rm cb} = \sigma_{\rm cb,0} + \beta \, m_{\mu\mu}.$$

Background Model

Trial functions to model background

The TLexc category			
Model	χ^2/ndf	F-test probability (> 0.05)	Decision
Polynomial III	0.95	-	✓
Polynomial IV	0.91	0.15	
Polynomial V	0.80	0.15	
Polynomial VI	0.77	0.03	×
Inv. Poly II	0.87	_	√
Inv. Poly III	0.86	0.32	√
Inv. Poly IV	0.83	0.90	√
Inv. Poly V	0.81	0.03	×

Systematics Uncertainties

Background

 Uncertainties on the background model are taken into account with the discrete profiling method

Signal

- Signal normalization is affected by various sources of systematic uncertainties:
 - σ_h : ±3.6%, considered for the limit on BR
 - Luminosity: ±2.5%
 - Pileup: $\pm 4.6\%$ on the $\sigma_{pp}^{inelastic}$
 - μ , ID, Iso, HLT scale factors: doubled for $p_{_T}$ < 20 GeV
 - JES: $p_{_T}$ and η dependent corrections applied on jets and propagated to $E_{_t}^{_{miss}}$
 - JER
- b-tagging: different sources affecting the shape calibration are considered and are doubled for low $p_{\scriptscriptstyle T}$ jets

Results

Expected and observed limits

- Assuming the SM prediction of σ_h
- Upper limits at 95% CL on the Higgs boson production cross section times branching ratio on $\sigma_h \times B(h \rightarrow a \ a \rightarrow \mu \mu bb)$ as well as on the Higgs boson branching ratio

Summary

We have just started to extract the physics potential of the 13 TeV dataset!

Search for exotic Higgs decay in µµbb final state has been presented

- Present talk covered only 2016 data set
- The VBF µµbb signal is also included and does not have much impact on significance
- Contribution from μμττ and bbττ signals is observed to be very small.
- No excess is found over the SM backgrounds
- Upper limits are reported on BR(h → aa → μμbb)

Present and future Work:

- Whole Run-II data-set analysis in progress
- Improve sensitivity below 20 GeV and to use dedicated tools for low p_{τ} searches

Thank You

Summary

We have just started to extract the physics potential of the 13 TeV dataset!

Search for exotic Higgs decay in µµbb final state has been presented

- Present talk covered only 2016 data set
- The VBF µµbb signal is also included and does not have much impact on significance
- Contribution from μμττ and bbττ signals is observed to be very small.
- No excess is found over the SM backgrounds
- Upper limits are reported on BR(h → aa → μμbb)

Present and future Work:

- Whole Run-II data-set analysis in progress
- Improve sensitivity below 20 GeV and to use dedicated tools for low p_{τ} searches

Thank You

Distributions at preselection

Back-Up

 $h_{125} \rightarrow aa \rightarrow \mu \mu b \bar{b}$

CMS-HIG-14-041

- NMSSM : BR $(h_1 \rightarrow a_1 a_1 \rightarrow \mu \mu b \bar{b})$ up to $\sim 2.10^{-3}$
- Range [25,65] GeV
- Fit in $m_{\mu\mu}$ distribution
- Exclude pseudoscalars with $BR(h \to a_1 a_1 \to \mu \mu b \bar{b})$ above 10^{-3}

Optimization procedure

- Based on simulated background samples
- Started with a *loosely* selected sample :
 - $p_T^{\mu} > 17(8) \text{ GeV}$,
 - $p_T^{jet} > 10 \text{ GeV}$,
 - >= 2 loose b-jets

- Expected limit based on counting signal and background yields in $|m_{uu}-m_a| < 5 \text{ GeV}$
- Tried to have a uniform selection vs. m_a

Functions for multipdf

- Different types of polynomials are checked on data in CR
 - RooPolynomial
 - RooBernstein (a particular polynomial with positive definite coefficients)
 - RooArgus
- An inverse polynomial is also introduced (1/P_n, a la Run I)
- An F-test is used to determine the collection of pdfs for each family
- The lowest degree is where the χ^2 / ndf is close to 1
 - Degrees are increased until Prob(- 2Δ NLL, 1) < 0.05

Model	χ^2/ndf	F-test probability (> 0.05)	Decision
Bernstein II	1.001	_	✓
Bernstein III	0.948	0.149	✓
Bernstein IV	0.859	0.017	×

• RooPolynomial and $1/P_n$ never gave χ^2 / ndf ~ 1

General strategy

- Signal:
 - Shape is assumed to remain unchanged
- Background:
 - Shape is taken from CR, assuming no change in categories
- Two type of categorizations in signal region:
 - MET < 30 & 30 < MET $< 60 \rightarrow bkg$ yield from MC
 - B-tagging criterion on Loose b-tagged jet → bkg yield from CR (no MC stat.)
 - TT, TMexc (medium, not tight), Tlexc (loose, not medium)
- Expected limits are evaluated and compared

Optimization

- Based on simulated background samples
- Initially selected loose cuts on signal sample :
 - $-p_{\tau}^{\mu}$ (leading) > 17 GeV
 - $-p_{\tau}^{\mu}$ (sub-leading) > 8 GeV
 - $-p_{\tau}^{\text{jet}}$ (leading/sub-leading) > 10 GeV
 - both jets selected with loose b-tag discriminant
- Variable $_S/\sqrt{b+(\delta b)^2}$ used, where δb is the statistical uncertainty from MC
- B-tag working points are used
- Pair of jets in the final state

Various possible permutations

- 1) Loose-Loose
- 2) Medium-Loose
- 3) Tight-Loose
- 4) Medium-Medium
- 5) Tight-Medium
- 6) Tight-Tight

Significance estimated for each permutation for both the taggers (CSVv2 and DeepCSV)

ATLAS Summary

Table 1: Summary of the event selection of the different analyses described in this paper. The quarkonia resonance masses $m_{J/\Psi}$, $m_{\Psi(2S)}$, $m_{\Upsilon(1S)}$, and $m_{\Upsilon(3S)}$ are taken from Ref. [73].

	$H \rightarrow ZX \rightarrow 4\ell$ (15 GeV < m_X < 55 GeV)	$\begin{array}{c} H \rightarrow XX \rightarrow 4\ell \\ (15 \text{ GeV} < m_X < 60 \text{ GeV}) \end{array}$	$H \to XX \to 4\mu$ (1 GeV < m_X < 15 GeV)	
QUADRUPLET				
SELECTION	- Three leading- $p_{\rm T}$ leptons satisfying $p_{\rm T} > 20$ GeV, 15 GeV, 10 GeV			
	- At least three muons are required to be reconstructed by combining ID and MS tracks in the 4μ channel			
	- Select best quadruplet (per	Leptons in the quadruplet are responsible for firing at least one trigger.		
	channel) to be the one with the	In the case of multi-lepton triggers, all leptons of the trigger must		
	(sub)leading dilepton mass	match to leptons in the quadruplet		
	(second) closest to the Z mass			
	- $50 \text{ GeV} < m_{12} < 106 \text{ GeV}$			
	- 12 GeV $< m_{34} < 115$ GeV			
	$-m_{12,34,14,32} > 5 \text{ GeV}$			
	$\Delta R(\ell, \ell') > 0.10 (0.20)$ for same-flavour (different-flavour) leptons in			
	the quad			
Quadruplet	Select first surviving quadruplet	Select quadruplet with smallest $\Delta m_{\ell\ell} = m_{12} - m_{34} $		
RANKING	from channels, in the order: 4μ ,			
	2e2μ, 2μ2e, 4e			
Event	115 GeV $< m_4$	ī .	$120 \text{GeV} < m_{4\ell} < 130 \text{GeV}$	
SELECTION		$m_{34}/m_{12} > 0.85$ Reject event if: $(m_{J/\Psi} - 0.25 \text{ GeV}) < m_{12,34,14,32} < (m_{\Psi(2S)} + 0.30 \text{ GeV}), \text{ or}$		
		$(m_{\Upsilon(1S)} - 0.70 \text{ GeV}) < m_{12,34,14,32} < (m_{\Upsilon(3S)} + 0.75 \text{ GeV})$		
		$10 \text{ GeV} < m_{12,34} < 64 \text{ GeV}$		
		$4e$ and 4μ channels:	No restriction on alternative	
		$5 \text{ GeV} < m_{14,32} < 75 \text{ GeV}$	pairing	