B decay anomalies at LHCb

XXIII DAE-BRNS HEP Symposium
12th December 2018, Chennai

Arantza Oyanguren
(IFIC – CSIC / UV)
(for the LHCb collaboration)
Outline

• Introduction
• The LHCb experiment
• Rare B decays
• Semileptonic B decays
• Conclusions
Introduction

• In the Standard Model of Particle Physics, transitions between different quarks are governed by the CKM mechanism:

\[V_{\text{CKM}} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix} \]

• The amplitude of a hadron decay process can be described using Effective Field Theories: Operator Product Expansion (OPE)

\[A(M \to F) = \langle F | \mathcal{H}_{\text{eff}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V_{\text{CKM}}^i C_i(\mu) \langle F | O_i(\mu) | M \rangle \]
\[A(M \rightarrow F) = \langle F | H_{\text{eff}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V^{i}_{CKM} C_i(\mu) \langle F | O_i(\mu) | M \rangle \]

CKM couplings
Wilson Coefficients
(\(\mu = \text{scale} \))
Hadronic Matrix Elements

\(\rightarrow \) OPE: a series of effective vertices multiplied by effective coupling constants \(C_i \).

\[q \quad q' \quad g \quad \ell \quad \ell' \quad O_7 \quad O_{9,10} \quad O_8 \quad O_{1\ldots6} \]

Electroweak scale \(\sim 1/M_W \)
New Physics scale \(\sim 1/M_{NP} \)

\[C_i = C_i^{SM} + C_i^{NP} \]

\[C'_i = C'_i^{SM} + C'_i^{NP} \]

Primed \(C'_i \rightarrow \) right handed currents: suppressed in SM
Why B decays?

- The b-quark is the heaviest quark forming hadronic bound states ($m \approx 4.7$ GeV)
- Must decay outside the 3rd family
 - Long lifetime (~1.6 ps)
 - Many accessible decay channels (small BR’s)
- Type of processes:
 - Dominant: $b \rightarrow c$ (favoured) and $b \rightarrow u$ (suppressed)
 - Rare: Flavour Changing Neutral Current (FCNC): $b \rightarrow s, d$
 - Flavour oscillations and CP violation

Ideal place to probe New Physics effects!

Good for experimentalists!

Good for theorists!
The LHCb experiment
The LHCb experiment

- The $b\bar{b}$ cross section in pp collisions is large, mainly from gluon fusion:
 $\sim 300 \mu$b @ $\sqrt{s}=7$ TeV
 $\sim 600 \mu$b @ $\sqrt{s}=13$ TeV

- The LHCb idea: to build a single-arm forward spectrometer:
 $\sim 4\%$ of the solid angle ($2 < \eta < 5$),
 $\sim 30\%$ of the b hadron production

- The b quarks hadronize in B, B_s, B^{*}, b-baryons...
 \rightarrow average B meson momentum ~ 80 GeV

Letter of Intent, 1995
The LHCb experiment

LHCb, ATLAS & CMS

$|\eta| < 2.4$
$\sigma_{P_T} \sim 0.7 - 1.5\%$
$\sigma_{IP_{\perp}} \sim 25 - 100 \mu m$
Very good PID (fake < 0.1%)

$2 < \eta < 5$
$\sigma_{P} \sim 0.5 - 1\%$
$\sigma_{IP_{\perp}} \sim 15 - 50 \mu m$
Good PID (fake < 3%)

$|\eta| < 2.5$
$\sigma_{P_T} \sim 1.3 - 3.8\%$
$\sigma_{IP_{\perp}} \sim 25 - 100 \mu m$
Rare B decays

- $b \to s, d$ quark transitions are Flavor Changing Neutral Currents (FCNCs),
- in the SM they only can occur through loops (penguin and box diagrams),
- excellent probe for physics beyond the SM

\begin{itemize}
 \item **leptonic**
 \[
 \text{BR} \sim 10^{-9}
 \]
 \item **semileptonic**
 \[
 \text{BR} \sim 10^{-7}
 \]
 \item **radiative**
 \[
 \text{BR} \sim 10^{-5}
 \]
\end{itemize}

Experimentally → leptons/photons with high transverse momenta
Theoretically → observables can be calculated in terms of Wilson coefficients

\[\Gamma\left(B_s^0 \to \mu^+ \mu^\text{-}\right) \sim \frac{\alpha^2}{64\pi^3} \frac{m_{B_s}^2 f_{B_s}^2}{2} \left|V_{tb} V_{ts}\right|^2 \left|2m_\mu C_{10}\right|^2\]

Hadronic uncertainties in decay constants or form factors
Rare B decays: $B_s \rightarrow \mu^+\mu^-$

- Very rare decay:
 FCNC and helicity suppressed
 $BR_{SM} = 3.66(23) \times 10^{-9}$

- Searched for over the last 30 years, observed by LHCb and CMS

- Updated analysis by LHCb, including Run2 data
 [PRL 118 (2017) 191801]

- $B_s \rightarrow \tau^+\tau^-$ also searched for at LHCb:
 $\mathcal{B}(B_s^0 \rightarrow \tau^+\tau^-) < 6.8 \times 10^{-3}$ at 95%
 [PRL 118 (2017) 251802]
Rare B decays: $B_s \rightarrow \mu^+ \mu^-$

- New result from ATLAS!
 - ATLAS-CONF-2018-046
- Run II data (2015+2016):
 - 26.3 fb\(^{-1}\) at 13 TeV
- Combined with the Run I result:
 - [ATLAS, EPJ C76 (2016) 513]

\[\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) = \left(2.8^{+0.8}_{-0.7}\right) \times 10^{-9} \]

\[\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) < 2.1 \times 10^{-10} \]

- Measurements in agreement with the SM
- Theoretical uncertainties ($f_{B(s)}, V_{\text{CKM}}$) well below statistical uncertainty
Rare B decays: $B_s \rightarrow \mu^+\mu^-$

We are here!
Rare B decays: $B \to K(\ast)\mu^+\mu^-$

Differential decay width: $d\Gamma/dq^2$

Each q^2 region probes different processes

$q^2 = (p_{\ell^+} + p_{\ell^-})^2$

Photon pole

$J/\psi (1S)$

$\psi (2S)$

charmonium resonances $c\bar{c} \to \ell^-\ell^+$

$C_7^{(r)}$

$C_9^{(r)}$

$C_7^{(i)}$, $C_9^{(i)}$

$C_9^{(r)}$, $C_10^{(r)}$

$C_9^{(i)}$, $C_10^{(i)}$

$C_7^{(i)}$

$C_7^{(r)}$, $C_9^{(r)}$

$C_9^{(i)}$, $C_10^{(i)}$

$\mu=m_b$:

$C_7 \sim 0.33$

$C_9 \sim 4.27$

$C_{10} \sim -4.17$

(Everything else small or negligible)

$C_i = C_i^{SM} + C_i^{NP}$

(Primed $C_i \to$ right handed currents: suppressed in SM)
Rare B decays: $B \to K^{(*)} \mu^+ \mu^-$

$B_0 \to K^{*0} \mu^+ \mu^-$

$\psi(2S)$

J/ψ

$\psi(1S)$

$J/\psi(1S)$

$\psi(2S)$

$C_7^{(0)}, C_1^{(0)}$

$C_9^{(0)}, C_{10}^{(0)}$

$J^P = 0^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$B^0 \to K^{*0} \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-
Rare B decays: $B \to K(\ast)\mu^+\mu^-$

- Differential decay width as function of $q^2 = m_{\mu\mu}^2$ at LHCb, using 3fb$^{-1}$

→ Smaller branching fractions than the SM predictions
Rare B decays: $B \to K^{(*)}\mu^+\mu^-$

- Also measured by CMS in the $B \to K^*\mu^+\mu^-$ channel [PLB 753 (2016) 424]
- 20.5 fb$^{-1}$, 1430 signal decays

\rightarrow Smaller branching fractions than the SM predictions?
\rightarrow Compatible with other experiments, competitive accuracy with LHCb

\rightarrow Results dominated by statistical uncertainties (including the BR of the normalization channels)
\rightarrow Caveat: theory affected by hadronic uncertainties (LQCD + LCSR)
Rare B decays: $B \rightarrow K^{(*)} \mu^+ \mu^-$

- Angular distribution in $B \rightarrow K^* \ell^- \ell^+$: q^2 and three angles

$$
\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_{\ell} \ d\cos\theta_K \ d\phi \ dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_{\ell}
- F_L \cos^2 \theta_K \cos 2\theta_{\ell} + S_3 \sin^2 \theta_K \sin^2 \theta_{\ell} \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_{\ell} \cos \phi
+ S_5 \sin 2\theta_K \sin \theta_{\ell} \cos \phi + S_6 \sin^2 \theta_K \cos \theta_{\ell} + S_7 \sin 2\theta_K \sin \theta_{\ell} \sin \phi
+ S_8 \sin 2\theta_K \sin 2\theta_{\ell} \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_{\ell} \sin 2\phi \right]
$$

→ In the lepton massless limit there are eight independent observables:

- $F_L =$ fraction of the longitudinal polarization of the K^*
- $S_6 = 4/3 \ A_{FB},$ the forward-backward asymmetry of the dimuon system
- $S_{3,4,5,7,8,9}$ are the remaining CP-averaged observables

→ They can be further reduced by folding over ϕ (if statistics is small)
Rare B decays: $B \to K^{(*)}\mu^+\mu^-$

- These observables are also affected by hadronic uncertainties
- A new set of “optimized observables”, with form factor cancellations can be defined:
 \[P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L (1 - F_L)}} \]

- These observable are functions of q^2 and the Wilson coefficients C_i

Example: P'_5

3σ local deviation
Recent results by CMS and ATLAS in the $B^0 \rightarrow K^* \mu^+ \mu^-$ decay channel

(CMS and ATLAS fit simultaneously only a subset of the amplitude parameters)
Rare B decays: $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

→ New: results from LHCb in the $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ decay channel
Run1 + Run2 data: 5fb$^{-1}$

$$\frac{d^5 \Gamma}{d\Omega} = \frac{3}{32\pi^2} \sum_{i}^{34} K_i(q^2) f_i(\Omega)$$

5 angles and 1 normal vector \vec{n}

Depends on many observables (K_i)

Obtained from method of moments

$$15 < q^2 < 20 \text{ GeV}^2$$

In general compatible with SM predictions

[Boër et al, JHEP 01 (2015) 155],
Rare B decays: \(R_K \)

- In the SM all leptons are expected to behave in the same way

Test of lepton universality:

\[
R_K = \frac{\mathcal{B}(B^+ \rightarrow K^+\mu^+\mu^-)}{\mathcal{B}(B^+ \rightarrow K^+e^+e^-)} = 1.000 + O(m_\mu^2/m_b^2)
\]

- Precise theory prediction due to cancellation of hadronic form factor uncertainties

- Challenge: bremsstrahlung by electrons

- Experimentally, use the \(B^+ \rightarrow K^+J/\psi(\rightarrow e^+e^-) \) and \(B^+ \rightarrow K^+J/\psi(\rightarrow \mu^+\mu^-) \) to perform a double ratio

1 GeV < \(q^2 < 6 \) GeV \[\text{[PRL 113 (2014) 151601]}\]

\[
R_K = 0.745^{+0.090}_{-0.074} \text{ (stat)} \pm 0.036 \text{ (syst)}
\]

→ Consistent, but lower, than the SM at \(2.6\sigma \)
Rare B decays: R_{K^*}

- Measurement in the $B \rightarrow K^* \mu^+ \mu^-$ channel, R_{K^*}:

$$R_{K^*0} = \frac{\mathcal{B}(B^0 \rightarrow K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \rightarrow K^{*0} e^+ e^-)}$$

- Computed in two bins of q^2
 - $[0.045, 1.1 \text{ GeV}^2]$ avoiding the photon pole
 - $[1.1, 6.0 \text{ GeV}^2]$ avoiding the radiative tail of J/ψ modes

$0.045 \text{ GeV} < q^2 < 1.1 \text{ GeV}$
$1.1 \text{ GeV} < q^2 < 6 \text{ GeV}$
Rare B decays: R_{K^*}

- Results: [JHEP 08 (2017) 055]

Low q^2 [0.045-1.1 GeV2]: $\text{SM} \downarrow = 0.922(22)$

$$R_{K^*0} = 0.66 \pm 0.11 \pm 0.07 \text{ (stat) } \pm 0.03 \text{ (syst)}$$

Central q^2: [1.1-6 GeV2]: $\text{SM} \downarrow = 1.000(6)$

$$R_{K^*0} = 0.69 \pm 0.11 \pm 0.07 \text{ (stat) } \pm 0.05 \text{ (syst)}$$

→ Consistent, but lower than the SM at 2.1-2.3σ (low q^2) and 2.4-2.5σ (central q^2)
Rare B decays: $B_s \to \phi \gamma$

- Time dependent distribution for $B_s \to \phi \gamma$ is sensitive to the photon polarization (predicted to be right-handed in the SM)

$|\mathcal{A}_{\text{SM}}| = 0.047 \pm 0.029$

$\Delta \mathcal{A} = -0.98^{+0.46+0.23}_{-0.52-0.20}$

→ Compatible with the SM within 2σ
Rare B decays

Global fits (some cases with more than 100 observables)

New Physics hypothesis preferred over SM by more than 4 - 5σ
Main effect on the $C_{9\mu}$ coefficient: $4.27^{\text{SM}} - 1.1^{\text{NP}}$

Triggered models with Z', leptoquarks (LQ), new fermions and scalars....
Semileptonic B decays
Semileptonic B decays: R_D, R_{D^*}

- Another test of lepton universality (now at tree level):

Ratio of semi-tauonic and semi-muonic branching fractions:

$$R(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu)}$$

Sensitive to charged Higgs bosons and leptoquarks

SM predictions very precise: (V$_{cb}$ and form factors (partially) cancel)

- $R(D)_{SM} = 0.299 \pm 0.003$
- $R(D^*)_{SM} = 0.252 \pm 0.003$

Based on HQET form factors:
- [H. Na et al., PRD 92 (2015) 054510]
- and experimental measurements (HFLAV)
- [D.Bigi, Gambino, PRD 94 (2016) 094008]
Semileptonic B decays

BaBar measured an excess of $B^0 \to D^{(*)} \tau^- \nu_\tau$ (3\sigma away from SM!) [PRD 88 (2013) 072012] [Nature 546 (2017) 227]

\(R(D^*) \)
- $B^0 \to D^{*+} \tau^- \bar{\nu}_\tau$, with $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$ [PRL 115 (2015) 111803]
- $B^0 \to D^{*-} \tau^+ \nu$, with $\tau^+ \to \pi^+ \pi^- \pi^+(\pi^0) \bar{\nu}_\tau$ [PRL 120 (2018) 171802]

LHCb:
- $B^{0} \to D^{*-} \tau^- \bar{\nu}_\tau$, with $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$ [PRL 120 (2018) 121801]

- Using $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$

Information from the missing mass squared $m_{\text{miss}}^2 = (P_B - P_{D^* - P_\mu})^2$ and muon energy

- Using $\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}_\tau$

Information from the position of the pions. Normalized to $B^0 \to D^{*-} \pi^+ \pi^- \pi^+$

Plot:
- **Legend:**
 - Data
 - $B \to D^{* \tau}$
 - Combinatorial
 - Misidentified μ

- **Axes:**
 - m_{miss}^2 (GeV2/c4)
 - Candidates / (0.3 GeV2/c4)

- **Graph:**
 - 9.35 < q^2 < 12.60 GeV2/c4
 - Normalization
 - Signal

Plot:
- **Legend:**
 - Data
 - $B \to D^{* \tau}$
 - Combinatorial

- **Axes:**
 - 3\pi decay time / (0.25 ps)
 - t_τ [ps]

Semileptonic B decays

- Global picture of R_D and R_{D^*}

→ About 4σ deviation from SM
Conclusions

• Deviations from the Standard Model in the flavour sector have been found by LHCb and other experiments:

* **Differential branching fractions**: \(B^0 \rightarrow K(\ast)^0 \mu^+\mu^- \), \(B^+ \rightarrow K(\ast)^+ \mu^+\mu^- \), \(B_s \rightarrow \phi \mu^+\mu^- \), \(B^+ \rightarrow \pi^+ \mu^+\mu^- \) and \(\Lambda_b \rightarrow \Lambda \mu^+\mu^- \)
 → Affected by hadronic uncertainties in the theory predictions

* **Angular analyses**: \(B^0 \rightarrow K(\ast)^0 \mu^+\mu^- \), \(B_s \rightarrow \phi \mu^+\mu^- \), \(B^0 \rightarrow K^{*0} e^+e^- \) and \(\Lambda_b \rightarrow \Lambda \mu^+\mu^- \)
 → Observables with smaller theory uncertainties

* **Test of Lepton Flavour Universality**: \(B^+ \rightarrow K^+ \ell^+\ell^- \) and \(B^0 \rightarrow K^{*0} \ell^+\ell^- \); \(B \rightarrow D(\ast)\tau \nu \)
 → Hadronic uncertainties in theory predictions cancel in ratios

• Deviations show a consistent pattern in global fits, pointing to new physics in the Wilson coefficient \(C_{g\mu} \), affecting differently to lepton families.
 → Difficult to be explained by just experimental effects.
 → Difficult to be explained by just QCD effects...
Thanks!
Rare B decays: $B \to K^* e^+ e^-$

- What about electrons? (sensitive to $C_7^{(')}$)

Angular observables of the $B^0 \to K^* e^- e^+$ at LHCb in the low $q^2 < 1\text{GeV}^2$

→ Virtual γ decaying in an observable $\ell^- \ell^+$ pair
→ Requires to go very low in the q^2 region

$[\text{JHEP04(2015)064}]$ (3fb$^{-1}$)

150 events

Long radiative tail in the B mass distribution: controlled from $B \to K^* \gamma$ events ($\gamma \to e^- e^+$, with bremsstrahlung emission)

→ Compatible with the SM predictions*

$[\text{Adapted from Jäger and Camalich arXiv:1412.3183}]$

*leading order estimation, 5% accuracy for SM value
Rare B decays: $R_{K^{(*)}}$

Quick note on experimental issues:

- LHCb is far better with muons than electrons
- Trigger, reconstruction, selection and particle identification are harder with electrons
- Mass resolution affected by e bremsstrahlung → need energy recovery
- Mass shape modelled according to the number of bremsstrahlung recovered
Rare B decays: $B \to K^{(*)}\mu^+\mu^-$

LHCb

[JHEP02(2016)104]

CMS

[PLB 753 (2016) 424]

ATLAS

[arXiv:1805.04000]

SM predictions based on

[Altmanshofer & Straub, EPJC 75 (2015) 382]

[LCSR f.f. from Bharucha, Straub & Zwicky, JHEP 08 (2016) 98]

Rare B decays: $B \to K^{(*)}\mu^+\mu^-$

Understanding effects from charm at LHCb:

- Phase difference between short- and long-distance amplitudes in the $B^+ \to K^+\mu^+\mu^-$ decay [LHCb, EPJ C(2017) 77]

$\frac{d\Gamma}{dm_{\mu\mu}}$ is a function of form factors and C_i

C_i^{eff} expressed as a sum of relativistic Breit-Wigner amplitudes: magnitudes and phases extracted from data

Form factors from FNAL & MILC [PRD 93(2016)025026]

→ Small effect of hadronic resonances in Wilson coefficients
Recent measurements by CMS in the $B^+ \rightarrow K^+ \mu^+ \mu^-$ decay channel [arXiv:1806.00636], submitted to PRD

$\frac{1}{\Gamma_\ell} \frac{d\Gamma_\ell}{d\cos \theta_\ell} = \frac{3}{4} \left(1 - F_H \right) (1 - \cos^2 \theta_\ell) + \frac{1}{2} F_H + A_{FB} \cos \theta_\ell$

A_{FB} = Forward-backward asymmetry of the dimuon system
F_H = contribution from the pseudoscalar, scalar and tensor amplitudes to the decay width

→ Consistent with SM predictions
Semileptonic B decays: R_D, R_{D^*}

BaBar measured an excess of $B^0 \rightarrow D(\ast) \tau^- \nu_\tau$ (3σ away from SM!) [PRD 88 (2013) 072012] [Nature 546 (2017) 227]

Belle:

$R(D), R(D^*)$

- $B^0 \rightarrow D(\ast)^+ \tau^- \nu_\tau$, with $\tau^- \rightarrow \ell^- \nu_\ell \nu_\tau$ [PRD92 (2015) 072014]
- $B^0 \rightarrow D^{*+} \tau^- \nu_\tau$, with $\tau^- \rightarrow \ell^- \nu_\ell \nu_\tau$ [PRD94 (2016) 072007]
- $B^0 \rightarrow D^{*+} \tau^- \nu_\tau$ and τ^- polarization [PRL118 (2017) 211801]

![Graphs and plots showing data analysis](remaining energy of e.m. calorimeter clusters)
Rare B decays: R_K

B mass versus q^2 for $B^+ \rightarrow K^+ \ell^+ \ell^-$

[References: [PRL 113 (2014) 151601]]