

First measurement of single top quark production cross-section in association with W boson at 13 TeV with CMS detector

<u>Priyanka</u>, Kirti Ranjan, Ashutosh Bhardwaj

Dept. of Physics & Astrophysics, University of Delhi

ON behalf of CMS collaboration

XXIII DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2018

12th December 2018

RECEIVED: May 18, 2018 REVISED: August 31, 2018

Accepted: October 2, 2018 Published: October 18, 2018

TOP-17-018

JHEP10(2018)117

Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at $\sqrt{s}=13\,\text{TeV}$

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: A measurement is presented of the associated production of a single top quark and a W boson in proton-proton collisions at $\sqrt{s}=13\,\mathrm{TeV}$ by the CMS Collaboration at the CERN LHC. The data collected corresponds to an integrated luminosity of $35.9\,\mathrm{fb}^{-1}$. The measurement is performed using events with one electron and one muon in the final state along with at least one jet originated from a bottom quark. A multivariate discriminant, exploiting the kinematic properties of the events, is used to separate the signal from the dominant $\mathrm{t\bar{t}}$ background. The measured cross section of $63.1\pm1.8(\mathrm{stat})\pm6.4(\mathrm{syst})\pm2.1\,(\mathrm{lumi})\,\mathrm{pb}$ is in agreement with the standard model expectation.

Keywords: Hadron-Hadron scattering (experiments), Top physics

ArXiv ePrint: 1805.07399

Outline

- > Single top quark production at LHC
- ➤ Introduction & Motivation
- > Cross section for top quark production at NNLO
- > tW & tt interference and treatments
- ➤ Analysis signal & possible backgrounds
- > Analysis Strategy, Object selection criteria & Status
- > Results

> Summary & Outlook

Single top-quark production at LHC

 Associated production of top quark & W boson (tW-channel): 2nd most dominant process at LHC.

Introduction & Motivation

- ➤ Both analyses are documented on the <u>tW Run2 twiki</u>
- > Cross-section of Single top-quark production => |Vtb| matrix element of CKM matrix¹.
- > Sensitive to non-SM couplings of Wtb vertex¹.
- ➤ Background to other searches (e.g. H->WW)

Theoretical (experimental) cross sections (in pb) for top quark production at approximate NNLO.

	Center of mass Energy	t-Channel (NNLO)	s-Channel (NNLO)	tW-Channel (NNLO)	tt~ (NNLO)
	Tevatron (ppBar) 1.96TeV	$2.08^{+0.00}_{-0.04}\pm0.12$ $(3.04^{+0.54}_{-0.49})$	$1.05^{+0.00}_{-0.01}\pm0.06$ $(1.29^{+0.26}_{-0.24})$	0.22±0.08 (—)	7.164+0.11+0.169-0.20-0.122
]	LHC (pp) 7TeV ^{1,3,4}	63.89 ^{+1.92+2.19} -1.25-2.19 (67.2±6.1)	4.29 ^{+0.12} _{-0.1} ±0.14 (<26.5)	$15.74\pm0.4^{+1.1}$ _{-1.14} $(16^{+5}$ ₋₄)	173.60 ^{+4.46} -5.85±8.85
]	LHC (pp) 8TeV ^{2,3,4}	84.69 ^{+2.56+2.76} _{-1.68-2.76} (85±12)	5.24 ^{+0.15} - _{0.12} ±0.16 (<11.5)	22.37±0.60±1.40 (23.4±5.4)	247.74 ^{+6.26} -8.45±11.47
]	LHC (pp) 13TeV ^{3,4}	216.99 ^{+6.62} _{-4.62} ±6.16 (219±1.5±32.9)	10.32 ^{+0.29} -0.24±0.27	71.7±1.8±3.4	815.96 ⁺¹⁹ .37 _{-28.61} ±34.38 at NNLO+NNLL (772±60±62)
D	faranaaa			3.2 ~	3.3

References:

- ¹Evidence for Associated Production of a Single Top Quark and W Boson in pp Collisions at 7TeV, PRI 110, 022003 (2013).
- Observation of the Associated Production of a Single Top Quark and a W Boson in pp Collisions at 8TeV, PRL 112, 231802 (2014)
- 3 https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopRefXsec#Single_top_t_channel_cross_sect
- 4https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO#Top_quark_pair_cross_sections_at

tt and tW

At LO the two processes are well defined and independent, but tt is still the dominant background

• Much larger cross section, and same final state if one b-jet is lost

Challenge for tW-Channel: Interference at NLO level with top-quarks (tt~) pair production for extraction of tW signal.

tW(NLO)

tW(NLO-interference)

Treatments of tt and tW

• Theoretical difficulty overcome by Diagram Removal (DR) & Diagram Subtraction (DS).

$$\mathcal{M} = \mathcal{M} + \mathcal{M}$$

$$|\mathcal{M}|^{2} = |\mathcal{M}|^{2} + 2\operatorname{Re}\{\mathcal{M} \mathcal{M}\} + |\mathcal{M}|^{2}$$

• **Diagram Removal (DR)**: Removes doubly resonant diagrams in NLO Wt amplitudes.

$$\left|\mathcal{M}\right|^2 = \left|\mathcal{M}^{(tw)}\right|^2$$

• **Diagram Subtraction (DS)**: Implement a subtraction term to locally cancel the tt~ contribution to modify the NLO Wt cross section.

$$|\mathcal{M}|^{2} = |\mathcal{M}^{\text{(tw)}} + \mathcal{M}^{\text{(tt\sim)}}|^{2} - C$$

$$g + g \to W^{-} + t + \bar{b}$$

$$k_{1} \quad k_{2} \quad k_{3}$$

$$C^{\text{SUB}} = \frac{(m_{t}\Gamma_{t})^{2}}{((k_{1} + k_{2})^{2} - m_{x}^{2})^{2} + (m_{t}\Gamma_{t})^{2}} |\mathcal{M}^{t\bar{t}}(\Phi'_{3})|^{2}$$

 Φ_3' : 3-body phase space point obtained by reshuffling Φ_3 kinematics to get

$$(k_1 + k_3)^2 = m_t^2$$

$$> DR-DS = |\mathcal{M}^{(tw)}|^2 - [|\mathcal{M}^{(tw)} + \mathcal{M}^{(tt\sim)}|^2 - C^{SUB}] = 2Re\{\mathcal{M}^{(tw)}\mathcal{M}^{(tt\sim)*}\}$$

Single-top hadroproduction in association with a W boson, Stefano Frixione, Eric Laenen, Patrick Motylinski and Chris White, Bryan R. Webber=> arXiv:0805.3067v1 [hep-ph]

Analysis Channel

Top Quark Decays

BR (t→Wb) ~ 100%

Dilepton channel:

Both W's decay via W $\rightarrow \ell_V$ (ℓ =e or μ ; 4%)

Lepton + jet channel:

One W decays via W $\rightarrow \ell \nu$ (ℓ =e or μ ; 30%)

Full hadronic channel:

Both W's decay via W→qq (46%)

Top quarks decay predominantly (~100%) to a W Boson and a b-quark.

Final state

Channel study consists:

(eμ2νb) ee2νb, μμ2νb

- \succ In final state we have 2 opposite charge leptons. Leptons include e, μ
- ➤ Additionally, we have 2 neutrinos, constitute Missing Energy
- ➤ Also b-jet

Possible Backgrounds

- $\Leftrightarrow t\bar{t}: t\bar{t} \longrightarrow WWbb \longrightarrow 212 \nu 2b \& 1b is not detected.$
- $^{\ }$ **Z+jets:** Z decays to e^+e^- or $\mu^+\mu^-$ & mis-measurement of jet energy causes the missing energy.
- **W+jets:** W decays leptonically & one of the jets fake as lepton.
- **WZ:** (i) Either W decays hadronically & Z leptonically, but mis-measurement of jet energy causes the missing energy OR (ii) W decays leptonically & Z decays leptonically.
- **WW:** Both W decays leptonically.
- Non W/Z: Arise from processes with one prompt-lepton (decaying from a W or a Z boson) and one non-prompt lepton that passes the isolation and identification criteria.

Data Samples and triggers

- ► Analysis is performed over the complete 2016 dataset (35.9 fb⁻¹)
- SingleElec, SingleMuon, DoubleElec, DoubleMuon and MuonEG primary datasets
- Run2016B-Run2016H (03Feb2017 ReReco)
- ► Using offical JSON: Cert_271036-284044_13TeV_ 23Sep2016ReReco_Collisions16_JSON.txt
- Trigger strategy as in TOP trigger twiki

Run B-G and MC	Run H
HLT_Mu23_TrklsoVVL_Ele12_CaloldL_TrackIdL_IsoVL_v* HLT_Mu8_TrklsoVVL_Ele23_CaloldL_TrackIdL_IsoVL_v*	HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v* HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v*
HLT_Ele27_WPTight_Gsf v* HLT_IsoTkMu24_v* HLT_IsoMu24 v*	HLT_Ele27_WPTight_Gsf_v* HLT_IsoTkMu24_v* HLT_IsoMu24_v*

MC Datasets

▶ Monte Carlo samples of tW and $t\bar{t}$ used in the analysis

Sample	σ [pb]	Events
/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8	831.8	77,229,341
/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8 (_backup)	831.8	78,006,311
/TTTo2L2Nu_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8	831.8	79,092,400
/ST_tW_top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1 (_ext1-v1)	35.85	6,952,830
/ST_tW_antitop_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1 (_ext1-v1)	35.85	6,933,094
/ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1	19.467	5,372,991
/ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1 (_ext1-v1)	19.467	3,256,650
/ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1 (_ext2-v2)	19.467	2,715,978
/ST_tW_antitop_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1	19.467	5,425,134
/ST_tW_antitop_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1 (_ext1-v1)	19.467	3,256,407
/ST_tW_antitop_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1 (_ext2-v1)	19.467	2,726,603

- ▶ Dileptonic ($t\bar{t}$) and "not fully hadronic" (tW) samples are used for BDT training, inclusive for background estimation and signal extraction
- Other backgrounds
 - DY: M50 and M10to50 amcatnloFXFX-pythia8
 - W+jets: madgraphMLM
 - ttV: amcatnloFXFX-pythia8
 - ► VV: pythia8

Di-lepton(eµ) Analysis Strategy

- HLT (Logical OR between single & double lepton triggers)
- At least two well identified, isolated leptons.
- Leptons must be with opposite charge (signal)

Pre-selection

- $m_{ll} > 20 \text{ GeV}$ (Suppress low mass Resonances)
- Signal region: 1jet 1b-tag, 2jet 1b-tag, 2jet 2b-tag
- ➤ Distinguish signal (tW) from background (tt):
- Multivariate technique (MVA) => Boosted decision tree (BDT).
- ➤ Simultaneous Likelihood fit over the different regions to BDT discriminant to separate signal tW and dominant tt background.

Selection Criteria-I ✓

- Event should have atleast one Tight Electron and one Tight muon
 - > Electrons
 - Cut based identification with **Tight** working points <u>electronID</u>
 - $P_T > 20 \text{GeV}, |\text{eta}| < 2.4$
 - **Gap veto:** $1.4442 < |eta_{sc}| < 1.566$
 - > Muons

Leading Lepton's $P_t > 25 \text{GeV}$

- Tight ID MuonID
- $P_T > 20 \text{GeV}, |\text{eta}| < 2.4$
- > Jets
- L1Fastjet, L2, L3 JECs for MCs.
- ™MC's+L2L3Residual JECs for real data.
- $P_T > 30 \text{GeV}, |eta| < 2.4$
- **©Loose** ID <u>JetID</u>
- ©CSVv2M=0.8484 bTaggingLink
- ☞ jet-lepton cleaning dR < 0.4
- > Met
- Used Type-I Corrected MET.
- Recommended Filters applied.

Data-MC comparison for several lepton kinematic variables at pre-selection level

Signal strength extracted using a maximum likelihood fit to the shape of 1j1tBDT, 2j1tBDT,2j2t sub-leading jet's p_T

Summary & Outlook

- •tW production cross-section paper has been published in JHEP (Cadiline: TOP-17-018).
- Signal extraction and cross-sections are measured to be:

$$\mu = 0.88 \pm 0.02(stat.) \pm 0.09(syst.) \pm 0.03(lumi.)pb$$
 $\sigma_{tW} = 63.1 \pm 1.8(stat.) \pm 6.4(syst.) \pm 2.1(lumi.)pb$
 $\sigma_{tW}(NNLO) = 71.7 \pm 1.8(scale) \pm 3.4(PDF)pb$

Main uncertainties: JES, lepton identification, tt modeling

THANK YOU