

Search for Anomalous Electroweak production of WW/WZ/ZZ Boson Pairs in Association with two jets in p-p Collision at 13 TeV

XXIII DAE-BRNS High Energy Physics Symposium IIT Madras, Chennai (India) 10 - 14 December 2018

Ram Krishna Sharma, Dr. Md. Naimuddin On Behalf of CMS Collaboration

Introduction -

Particle physics is a modern name for the centuries old effort to understand the basic laws of physics. - Edward Witten

Ram Krishna Sharma

DAE, IIT Madras

After Higgs Discovery???

- Important task is to understand the mechanism behind the Electroweak Symmetry Breaking!!!
- Two possible ways:
 - 1.Precision measurement of the Higgs and the vector boson properties.

2.Study of the vector boson scattering.

Vector Boson Scattering

- Without Higgs, VBS cross section would violate unitarity at the TeV scale.
- Vector boson scattering at the LHC probes triple and quartic gauge couplings
- Anomalous triple and quartic gauge couplings (aTGC, aQGC) would indicate the presence of new physics
 - Increases the cross-section at large di-boson mass and transverse momentum.
 - sensitive to new physics contributions in the kinematic tail.
- Anomalous couplings can be introduced as a model independent way using Effective Field Theory (EFT).

aQGC in the EFT Framework

- BSM search using model independent way:
 - Modify triple and quartic gauge couplings by redefining SM Lagrangian.

$$L_{SM} \longrightarrow L_{eff} = L_{SM} + \sum_{n=1}^{\infty} \sum_{i} \frac{c_i^{(n)}}{\Lambda^n} \mathcal{O}_I^{(n+4)}$$

- $\Lambda >> m$ & L_{eff} \rightarrow L_{sm} as $\Lambda \rightarrow \infty$
- An effective field theory is the low energy approximation to the new physics, where "low" means < Λ
- Sample was generated using MadGraph5 at leading-order (LO)
 - Used reweighting feature to save information about different parameter points for each operator.

	WWWW	WWZZ	$WW\gamma Z$	WWγγ	ZZZZ	ZZZγ	ΖΖγγ	Ζγγγ	γγγγ
$\mathcal{O}_{S,0}, \mathcal{O}_{S,1}$	\checkmark	\checkmark			\checkmark				
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6}, \mathcal{O}_{M,7}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{M,2}, \mathcal{O}_{M,3}, \mathcal{O}_{M,4}, \mathcal{O}_{M,5}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{T,0}, \mathcal{O}_{T,1}, \mathcal{O}_{T,2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{T,5}, \mathcal{O}_{T,6}, \mathcal{O}_{T,7}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ram Krishna Sharma			DAE, IIT Madras			12/12/2018			5

aQGC parameters to probe

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\\mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \\\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \\\mathcal{L}_{M,2} = \left[B_{\mu\nu}B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \\\mathcal{L}_{M,3} = \left[B_{\mu\nu}B^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \\\mathcal{L}_{M,4} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\mu}\Phi \right] \times B^{\beta\nu} \\\mathcal{L}_{M,5} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\nu}D^{\mu}\Phi \right] \\\mathcal{L}_{M,6} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\mu}\Phi \right] \\\mathcal{L}_{M,7} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\nu}\Phi \right]$$

The operators in the red box are the one which we considered in our analysis.

• **Dimension 8 operators:** Lowest dimension operators that modify the quartic boson interactions.

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$
Ref: Phys.Rev. D74 (2006) 073005

Ram Krishna Sharma

DAE, IIT Madras

Anomalous Quartic Gauge Coupling

DAE, IIT Madras

Ram Krishna Sharma

12/12/2018

 \overline{q}

Signal & Background

- **VVJJ (EWK) :** Electroweak production of WWJJ.
- VVJJ (aQGC EWK): Electroweak production of VVJJ with contributions from aQGC.
- **W+Jets:** Most dominating background.
- VVJJ (QCD initiated): Irreducible background for analysis.
- tt **Jets**: Top quark always decays to one b-quark and one W boson. So, $t\bar{t} \rightarrow bWbW \rightarrow bl\nu l\nu$, if we mis-measure one lepton and one b quark form jets.
- Drell-Yan: Z/Gamma decays to I⁺I⁻ and we mis-measure one I because of acceptance or inefficiency effects, gives missing energy.
- Single top production: Here $t \rightarrow bW \rightarrow bl\nu$, and 3 jets is reconstructed.

Centrality and Zeppenfeld Definition

Boson Centrality (Phys. Rev. D 95, 032001)

$$\xi_{V} = min\{\Delta \eta_{-}, \Delta \eta_{+}\}$$
where,

$$\Delta \eta_{-} = min\{\eta(V_{had}), \eta(V_{lep})\} - min\{\eta_{j1}, \eta_{j2}\},$$

$$\Delta \eta_{+} = max\{\eta_{j1}, \eta_{j2}\} - max\{\eta(V_{had}), \eta(V_{lep})\}$$
• $\xi > 0$: Both W's should be within VBF jets
• $\xi < 0$: One or both lepton are at larger $|\eta|$
than the VBF jets

Event of the second sec	ent-Sel	ēcti	on			
WV Channel		ZV Channel				
 Final Selection Electron Exactly 1 lepton For electrons exclude < η < 1.566 MET > 80 GeV (50 GeV) Fat Jet (having radiu 65< m_W < 105, Tation VBF jets (having radiu 0.4): m_{jj} > 800 GeV, dE Boson-Centrality > 1 Leptonic zeppenfeld Hadronic zeppenfeld m_{wv} > 600 	ns (Muons) e region 1.4442 eV) s parameter 0.8): au2/Tau1 < 0.55 ius parameter ta > 4.0 .0 < 0.3 d < 0.3	 Final \$ Exa 76 Lan VB VB mz Fit my 	Selection actly 2 leptons $< m_{LL} < 107$ rge radius para $65 < m_Z < 105,$ 0.55 F jets: $m_{jj} > 800$ GeV, v > 600	Small value represents higher probability for a jet to be composed of two sub-jets meter jet: Tau2/Tau1 < dEta > 4.0		
Ram Krishna Sharma	DAE, IIT Madra	as	12/12	/2018 10		

Data driven background estimation (Alpha-Ratio Method)

• To get V+jet contribution from data in signal region:

 $N_{signal}^{Data,W+Jets}(M_{WW}) = \alpha(M_{WW}) \times N_{sideband}^{Data}(M_{WW})$

Alpha (taken from MC) is defined as:

$$\alpha(M_{WW}) = \frac{N_{signal}^{MC,W+Jets}(M_{WW})}{N_{sideband}^{MC,W+Jets}(M_{WW})} = \frac{N_{signal}^{Data}(M_{WW})}{N_{sideband}^{Data}(M_{WW})}$$

- In this formula there are three sources of uncertainty.
 - Uncertainty in alpha (dominated by MC statistics)
 - Uncertainty coming from W+jet shape
 - Statistical uncertainty coming from data

Ram Krishna Sharma

DAE, IIT Madras

12/12/18

WV/ZV Signal Extraction

- We used M_{vv} distribution to get the limits for both WV and ZV channel.
 - SM EWK production is treated as background.

Final state	WV	ZV
Data	$\phantom{00000000000000000000000000000000000$	47 ± 7
V+jets	187 ± 21	41.2 ± 6.1
top	120 ± 18	0.16 ± 0.04
SM QCD VV	28 ± 10	6.4 ± 2.2
SM EW VV	17 ± 2	> 2.4 ± 0.4
Total bkg.	352 ± 21	50.1 ± 5.9
$f_{T2}/\Lambda^4 = -0.5, -2.5 \text{ TeV}^{-4}$	22 ± 1	7.6 ± 0.6
$m_{H_5} = 500 \text{ GeV}, s_h = 0.5$	40 ± 1	4.3 ± 0.1

 Before doing this we estimated W+jets (for WV channel) and Z+jets (for ZV channel) in data driven way.

Ram Krishna Sharma

DAE, IIT Madras

Systematic Uncertainty

- Major systematics are considered as shape based.
- Also, limited MC statistics uncertainty are considered bin-wise.

Source	Shape	Signal	V+jets	SM EW	SM QCD VV	top
QCD scale	\checkmark	9-20		12	30	
PDF unc.	\checkmark	15		10	10	
Jet momentum scale	\checkmark	1-9		1-9	3.0-15	5.0-7.0
V-jet selection		8.0		8.0	8.0	
GM model EW		7.0			—	
bkg. normalization			7-16			2.0
V+jets shape	\checkmark		shape	_	/_	
Integrated luminosity		2.5		2.5	2.5	
Lepton efficiency		1.0-2.0		1.0-2.0	1.0-2.0	
Lepton momentum scale	\checkmark	0.2-0.4		0.5	1.0-1.3	1.0
b-quark jet efficiency		2.0	— \	2.0	2.0	3.0
Jet/MET resolution		4.0	_ \	3.0	2.0	
Pileup modeling		4.0	<u> </u>	4.0	4.0	
Limited MC stat.	\checkmark	shape	$\langle \neq \rangle$	shape	shape	shape

Ram Krishna Sharma

DAE, IIT Madras

Results - Anomalous Coupling Limits

aQGC Parameters Previous published limits		Our Limits				
		WV Channel	ZV Channel	Combined Limit		
FS0	[-7.7,7.7]		;			
FS1	[-22,22]			ien		
FT0	[-0.46,0.44]			Re		
FT1	[-0.28,0.31]		atio			
FT2	[-0.89,1.0]	borati				
FM0	[-4.2,4.2]		ollouble			
FM1	[-8.7,9.1]	Jet .	FOL			
FM6	[-12,12]	Jn				
FM7	[-13,13]					

Reference:

1. <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC#aQGC_Results</u>

Ram Krishna Sharma

DAE, IIT Madras

• Analysed both WV and ZV channel for aQGC.

• Signal sample was generated using MadGraph at LO.

Signal extraction was done using invariant mass of WV/ZV system (M_{wv/zv}).

Parametric Function For Each Background

Side-band

Ram Krishna Sharma

DAE, IIT Madras

12/12/18