

$b ightarrow s\ell\ell$ decays at Belle

¹S. Choudhury, ²S. Sandilya, ³K. Trabelsi, ¹A. Giri

¹IIT Hyderabad, ²Uni. of Cincinnati, ³LAL/KEK

December 14, 2018

XXIII DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2018 December 10 - 14, 2018

Introduction

2 Test of Lepton Flavor Universality (LFU) and status of R_K , R_K^*

3 R_K sensitivity at Belle

4 Search for Lepton Flavor Violating (LFV) decays $B^+ o K^+ \ell \ell'$

Search for LFV decays $B^0 \rightarrow K^{*^0} \ell \ell'$ [PRD 98.071101(R) (2018)]

6 Conclusion

• $b \rightarrow s$ quark transition are FCNCs. These processes occur through penguin loop and box diagrams in SM.

- These decays are highly suppressed and very small BR (\mathcal{O} (10⁻⁶)).
- These decays are very sensitive to NP.
- Probes NP models at energy scales higher than direct searches (\sim 100 TeV).

New physics can contribute by:

- enhancing or suppressing decay rates.
- modifying the angular distribution of the final state particles.

Introduction

• The amplitude of a hadron decay process is described as:

• NP can affect SM operator contributions (Wilson coefficients) and/or enter through new operators.

Test of Lepton Flavor Universality (LFU) (R_{K}^{*})

LFU in $B^0 \to {K^*}^0 \ell^+ \ell^-$

- LHCb measurement of $R_{K^*} = \frac{BR(B^0 \to K^{*^0} \mu^+ \mu^-)}{BR(B^0 \to K^{*^0} e^+ e^-)} \text{ shows deviations from SM expectation.}$ $R_{K^*}(0.045 < q^2 < 1.1 \text{ GeV}^2/c^4) = 0.66^{+0.11}_{-0.07} \pm 0.03$ $R_{K^*}(1.1 < q^2 < 6 \text{ GeV}^2/c^4) = 0.69^{+0.11}_{-0.07} \pm 0.05$
- Compatibility with the SM estimated to be at the level of $2.1 2.3\sigma$ for low q^2 and $2.4 2.5\sigma$ at central q^2 for a data sample of 3fb^{-1} .
- Belle measurement for whole q^2 region, $R_{K^*} = 0.83 \pm 0.17 \pm 0.08$, is consistent with SM prediction.

Test of LFU (R_K)

LFU in $B^+ \to K^+ \ell^+ \ell^-$

- Theoretically, similar to $B o K^* \mu^+ \mu^-$, but K is a scalar.
- These observables are theoretically very clean, as most of the hadronic uncertainties cancel out in the ratio.
- LHCb (PRL 113, 151601(2014)) shows deviation from SM $R_{K} = \frac{BR(B^{+} \to K^{+}\mu^{+}\mu^{-})}{BR(B^{+} \to K^{+}e^{+}e^{-})} = 0.745^{+0.090}_{-0.074} \pm 0.036$ in $q^{2} = [1 - 6] \text{ GeV}^{2}/c^{4} : 2.6\sigma$ tension for 3fb^{-1} data sample.
- The value of R_{κ} for Belle was consistent with unity within the uncertainty limit measured for a data sample of 605fb^{-1} .
- Currently, the study of R_K with Belle full data sample (711fb⁻¹) is going on, I will present here the sensitivity.

R_K sensitivity at Belle

- The decay channels used are $B^+ \to K^+ \ell \ell$ and $B^0 \to K^0_S \ell \ell$, where, $\ell \ell = \mu \mu$ or *ee*.
- K[±], μ[±] and e[±] particles satisfying PID are selected from tracks near IP. K⁰_S are selected using K⁰_S displaced vertex properties and with a mass window of 0.487 < M_{K⁰_c} < 0.508 GeV/c².
- The kinematic variables those differentiate signal from background are

$$M_{bc} = \sqrt{E_{beam}^2 - |p_B|^2}$$

 $\triangle E = E_B - E_{beam}$

where, E_{beam} refers to the beam energy, which is half the center of mass (CM) frame energy. E_B and p_B are energy and momentum of *B* candidate.

• Peaking Backgrounds: The peaking backgrounds from $B \to KJ/\psi(\ell\ell)$ and $B \to K\psi'(\ell\ell)$ are vetoed by applying q^2 cut;

 $8.5 < q^2 < 10.2~{
m GeV}^2/c^4$ for J/ψ $13 < q^2 < 14~{
m GeV}^2/c^4$ for $\psi(2S)$

The other peaking from $B \rightarrow D^0(K\pi)\pi$ (pion assumed muon mass hypothesis) is removed by applying invariant mass cut *i.e.*, $1.85 < M_{K\pi} < 1.865 \text{ GeV}/c^2$.

- A Neural Network (NN) is trained with some event shape (LR KSFW, cos_{θ_B}, cos_{θ_T},...), vertex quality (ΔZ, χ²(Kℓℓ),...) and kinematic (E^(ROE)_{vis}, E_{miss}...) variables to suppress background from continuum and generic B-decays.
- The NN output is translated to NN' using

$$\mathrm{NN'} = \mathrm{log} \frac{\mathrm{NN} - \mathrm{NN}_{\mathrm{min}}}{\mathrm{NN}_{\mathrm{max}} - \mathrm{NN}}$$

where, $NN_{\rm min}=-0.6$ is the minimum NN cut applied. $NN_{\rm mix}$ is the maximum NN value and is obtained from signal MC.

• The minimum cut reduces \sim 75% of backgrounds, with \sim 95% signal efficiency retention.

NN' has similar distribution for different q² bins for signal as well as backgrounds → same PDF can be used for different q² regions.

R_K sensitivity at Belle

- 3D fit is performed using M_{bc} , ΔE and NN'.
- PDF are modeled as:

	Signal	generic B	Continuum
ΔE	Crystal Ball + Gaussian	Exponential	Chebychev polynomial
M_{bc}	Gaussian	Argus	Argus
NN'	Bifurcated Gaussian + Gaussian	Gaussian	Gaussian

- $R_{\kappa}(J/\psi) = 1.00 \pm 0.01$ (data), value is found to consistent with unity within the uncertainty in MC as well as in data.
- $B \to KJ/\psi(\ell\ell)$ is used to calibrate signal PDF of $B \to K\ell\ell$.
- Off-resonance sample which is taken 60 MeV below $\Upsilon(4S)$ resonance, used to study continuum background and fix the PDFs shapes.
- The backgrounds PDFs parameters for generic *B* decay are floated.

- 3D fit is performed using M_{bc} , ΔE and NN'.
- PDF are modeled as:

	Signal	generic B	Continuum
ΔE	Crystal Ball + Gaussian	Exponential	Chebychev polynomial
M_{bc}	Gaussian	Argus	Argus
NN'	Bifurcated Gaussian + Gaussian	Gaussian	Gaussian

- $R_{K}(J/\psi) = 1.00 \pm 0.01$ (data), value is found to consistent with unity within the uncertainty in MC as well as in data.
- $B \to KJ/\psi(\ell\ell)$ is used to calibrate signal PDF of $B \to K\ell\ell$.
- Off-resonance sample which is taken 60 MeV below $\Upsilon(4S)$ resonance, used to study continuum background and fix the PDFs shapes.
- The backgrounds PDFs parameters for generic *B* decay are floated.

• Signal region: $M_{bc} > 5.27 \text{ GeV}/c^2$, $-0.05 < \Delta E < 0.05 \text{ GeV}$ and NN'>0.5.

R_K sensitivity at Belle

- The R_K uncertainty of Belle for whole q² region was 0.19 (statistical), measured for a data sample of 605fb⁻¹ [PRL 103,171801(2009)].
- Our current expected statistical uncertainty is 0.2 for a bin of $1 < q^2 < 6~{\rm GeV}^2/c^4$ and 0.1 for whole q^2 region.
- If we consider LHCb result as central value, then the violet box shows our estimated uncertainty.

• The R_K estimation for high q^2 region is in progress.

- The deviation from SM expectation in R_{K} and R_{K^*} from LHCb result possibly show LFU violation.
- LFV can come together with LFU violation (S. L. Glashow et.al PRL 114, 091801 (2015)).
- Currently Belle has published LFV decays $B^0 \to K^{*^0} \ell \ell'$, where $\ell = \mu, e$ [PRD 98.071101(2018)].
- We are also studying LFV decays $B^+ \to K^+ \ell \ell'$, where $\ell = \mu, e$.
- Applied same particle selection criteria as that of R_K study.
- The main sources of peaking backgrounds are removed by applying invariant mass cut on events, coming from $B \to KJ/\psi(\ell\ell)$ i.e., $3.06 < M_{\ell_1\ell_2}, M_{K\ell_2} < 3.12 \text{ GeV/c}^2$ and around D^0 mass region for $B \to D^0(\to K\pi)\pi$, i.e., $1.84 < M_{K\ell_2} < 1.86 \text{ GeV/c}^2$.
- 3D fit is performed using M_{bc}, ΔE and NN'.
- $B \to KJ/\psi(\ell\ell)$ ($\ell\ell = \mu\mu$ and *ee*) behave as control sample for these LFV modes.
- Fitting procedure is almost similar to R_K study, but here we have merge background in a single component.

イロン イヨン イヨン イヨ

Search for LFV decays $B^+ \rightarrow K^+ \ell \ell'$

• The expected upper limit on BR with 90% CL is estimated by

$$\mathcal{B}^{(\mathcal{UL})} = \frac{N^{(\mathcal{UL})}_{sig}}{N_{B\bar{B}} \times \varepsilon}$$
where, $N^{(\mathcal{UL})}_{sig}$ is number of signal events in the upper limit,
 ε is signal yield efficiency,
 $N_{B\bar{B}}$ is number of $B\bar{B}$ pairs = 7.7 × 10⁸.

Mode	ε (%)	$N_{sig}^{(UL)}$	$\mathcal{B}^{(\mathcal{UL})}$ (10 ⁻⁸)	PDG ${\cal B}$ (10 $^{-7}$)
$B^+ \rightarrow K^+ \mu^+ e^-$	29.3	4.4	2.0	< 1.3
$B^+ ightarrow K^+ \mu^- e^+$	30.0	4.9	2.1	< 0.9

 Our estimated upper limit are an order of magnitude better than that of the PDG upper limits, which are from BaBar [PRD 73(2006)092001].

Search for LFV decays $B^0 o K^{*^0} \ell \ell'$

- The modes studied are $B^0 \rightarrow K^{*^0} \mu^+ e^-$ and $B^0 \rightarrow K^{*^0} \mu^- e^+$ [PRD 98.071101(R)(2018)].
- Strong contribution from continuum and generic B backgrounds.
- Trained two NN to suppress backgrounds.
- Good agreement between data and MC.
- No evidence of signal observed → upper limit is estimated.

Mode	ε (%)	N _{sig}	$N_{sig}^{(UL)}$	$\mathcal{B}^{(\mathcal{UL})}$ (10 $^{-7}$)
$B^0 ightarrow {K^*}^0 \mu^+ e^-$	8.8	$-1.5^{+4.7}_{-4.1}$	5.2	1.2
$B^0 ightarrow {K^*}^0 \mu^- e^+$	9.3	$0.4^{+4.8}_{-4.5}$	7.4	1.6
$B^0 ightarrow {K^*}^0 \mu^\pm e^\mp$	9.0	$-1.2^{+6.8}_{-6.2}$	8.0	1.8

Conclusion

- Several anomalies in B decays indicating lepton non-universal interactions.
- LFU tests are extremely clean probes for NP.
- Particular interest is in ratio testing LFU since they are not affected by hadronic uncertainties.
- Anomalies indicating LFU, in general we should also observe LFV processes.
- Belle searched LFV $B^0 o {K^*}^0 \mu^\pm e^\mp$ and the most stringent limit is found.
- Belle will publish soon the result of R_K and R_{K^*} with full data sample, including LFV decay modes $(B^{\pm} \rightarrow K^{\pm} \mu^{\pm} e^{\mp})$.

Observables	Belle $605/711 \mathrm{fb}^{-1}$	Bellell $5ab^{-1}$	Bellell 50 ab^{-1}
$R_{\mathcal{K}}$ ([1.0, 6.0] GeV ²)	_	11%	3.6%
$R_{\rm K} \ (> 14.4 \ { m GeV}^2)$	-	12%	3.6%
R_{K^*} ([1.0 - 6.0] GeV ²)	_	10%	3.2%
$R_{K^*}~(>14.4~{ m GeV^2})$	—	9.2%	2.8%
R_{κ} (whole q^2)	19%	-	-
R_K ([1.0, 6.0] GeV ²)	22%	—	—

