Model Independent analysis of $\bar{B}^* \to Pl\bar{\nu}_l$ decay processes

Atasi Ray, Rukmani Mohanta

University of Hyderabad

XXIII DAE-BRNS High Energy Physics Symposium 2018

December 14, 2018

Outline

- Motivation
- ② $B^* \to Pl\bar{\nu}_l$ decay processes
- Constraints on new couplings
 - $b \rightarrow u l \bar{\nu}_l$ decay processes.
 - **2** $b \rightarrow cl\bar{\nu}_l$ decay processes
- **©** Effect of NP in various parameters of $B^* \to D^0 I \bar{\nu}_I$ and $B^* \to \pi^0 I \bar{\nu}_I$ decay process
- Conclusion

Motivation

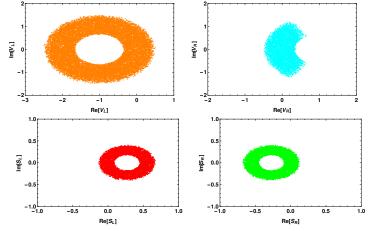
• Recently several anomalies has observed in the rare semileptonic B decays driven by $b \to (c/s)$ quark level transitions.

Table: List of measured lepton non-universality parameters.

LNU parameters	Experimental value	SM prediction	Deviation
$R_{K} _{q^{2} \in [1,6] \text{ GeV}^{2}}$	$0.745^{+0.090}_{-0.074} \pm 0.036$	1.003 ± 0.0001	2.6σ
$R_{K^*} _{q^2 \in [0.045, 1.1] \text{ GeV}^2}$	$0.66^{+0.11}_{-0.07}\pm0.03$	0.92 ± 0.02	2.2σ
$R_{K^*} _{q^2 \in [1.1,6] \text{ GeV}^2}$	$0.69^{+0.11}_{-0.07}\pm0.05$	1.00 ± 0.01	2.4σ
R_D	$0.391 \pm 0.041 \pm 0.028$	0.300 ± 0.008	1.9σ
R_{D^*}	$0.316 \pm 0.016 \pm 0.010$	0.252 ± 0.003	3.3σ
$R_{J/\psi}$	$0.71 \pm 0.17 \pm 0.184$	0.289 ± 0.01	2σ

• In this context we wish to scrutinize the possibility of observing LNU parameters and other asymmetries in various rare semileptonic decay process mediated by $b \rightarrow (c, u)$ quark level transitions.

Effective Lagrangian


The most effective Lagrangian for $\bar{B}^* \to Pl\bar{\nu}_l$ decay process mediated by $b \to q'$ quark level transition can be expressed in presence of new physics (NP) as,

$$\mathcal{L}_{eff} = -2\sqrt{2}G_F \sum_{q'b} V_{q'b} [(1+V_L)\bar{q'}_L\gamma^{\mu}b_L\bar{l}_L\gamma_{\mu}\nu_L + V_R\bar{q'}_R\gamma^{\mu}b_R\bar{l}_L\gamma_{\mu}\nu_L + S_L\bar{q'}_Rb_L\bar{l}_R\nu_l + S_R\bar{q'}_Rb_L\bar{l}_R\nu_L + T_L\bar{q'}_R\sigma^{\mu\nu}b_L\bar{l}_R\sigma_{\mu\nu}\nu_L] + h.c.$$

Where,

- P is a pseudo-scalar meson, G_F is the Fermi constant and $V_{a'b}$ are the CKM matrix elements.
- $(q, l)_{L,R} = \frac{1 \pm \gamma_5}{2} (q, l)$, where $\frac{1 \pm \gamma_5}{2}$ are the projection operators.
- $V_{L,R}$ and $S_{L,R}$ are the new Wilson coefficients. In SM $V_{L,R} = S_{L,R} = 0$

Constraints on $b \to u l \bar{\nu}_l$ decay process

Constraints on V_L , V_R , S_L , S_R new coefficients associated with $b \to u \tau \bar{\nu}_{\tau}$ transitions, obtained from ${\rm Br}({\rm B}_{\rm u}^+ \to \tau^+ \nu_{\tau})$, ${\rm Br}({\rm B} \to \pi \tau \bar{\nu}_{\tau})$, R_{π}^I observables.

Constraint on $b \to cl\bar{\nu}_l$ decay process

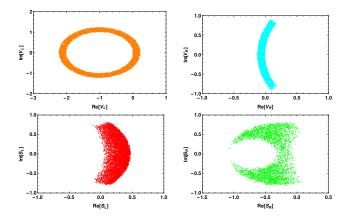


Figure: Constraints on V_L , V_R , S_L , S_R new coefficients associated with $b \to c \tau \bar{\nu}_{\tau}$ transitions, obtained from ${\rm Br}({\rm B_c^+} \to \tau^+ \nu_{\tau})$, $R_{D^{(*)}}$ and $R_{J/\psi}$ observables.

Constraint on new couplings

Table: Allowed ranges of the new coefficients.

Decay Processes	New coefficients	Min. value	Max. Value
$b o u auar u_ au$	$(\operatorname{Re}[V_L],\operatorname{Im}[V_L])$	(-2.489, -1.5)	(0.504, 1.48)
	$(\operatorname{Re}[V_R],\operatorname{Im}[V_R])$	(-0.478, -1.185)	(0.645, 1.198)
	$(\operatorname{Re}[S_L], \operatorname{Im}[S_L])$	(-0.136, -0.396)	(0.672, 0.398)
	$(\operatorname{Re}[S_R],\operatorname{Im}[S_R])$	(-0.6743, -0.398)	(0.1265, 0.398)
$b o c auar u_ au$	$(\operatorname{Re}[V_L], \operatorname{Im}[V_L])$	(-2.224, -1.228)	(0.225, 1.225)
	$(\operatorname{Re}[V_R],\operatorname{Im}[V_R])$	(-0.129, -0.906)	(0.173, 0.89)
	$(\operatorname{Re}[S_L], \operatorname{Im}[S_L])$	(-0.116, -0.788)	(0.474, 0.8)
	$(\operatorname{Re}[S_R],\operatorname{Im}[S_R])$	(-1.076, -0.809)	(0.06, 0.807)

Motivation

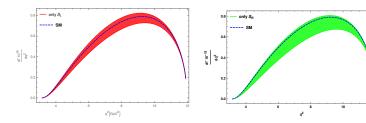
The differential decay rate with particular leptonic helicity states $(\lambda = \pm \frac{1}{2})$ can be written as,

$$\begin{split} \frac{d^2\Gamma[\lambda_I = -\frac{1}{2}]}{dq^2 d\cos\theta} &= \frac{G_F^2 V_{q'b}^2 P}{256\pi^3 m_{B^*}^2} \frac{1}{3} q^2 \left(1 - \frac{m_I^2}{q^2}\right)^2 \left[|1 + V_L|^2 [(1 - \cos\theta)^2 H_{-+}^2 + (1 + \cos\theta)^2 H_{+-}^2 + 2\sin^2\theta H_{00}^2 + |V_R|^2 [(1 - \cos\theta)^2 H_{+-}^2 + (1 + \cos\theta)^2 H_{-+}^2 + 2\sin^2\theta H_{00}^2] - 4\mathcal{R}e[(1 + V_L)V_R^*] [(1 + \cos\theta)^2 H_{+-} H_{-+} + \sin^2\theta H_{00}^2]\right] \\ \frac{d^2\Gamma[\lambda_I = \frac{1}{2}]}{dq^2 d\cos\theta} &= \frac{G_F^2 V_{q'b}^2 P}{256\pi^3 m_{B^*}^2} \frac{1}{3} q^2 \left(1 - \frac{m_I^2}{q^2}\right)^2 \times \left[(|1 + V_L|^2 + |V_R|^2) \right] \\ \left[\sin^2\theta (H_{-+}^2 + H_{+-}^2) + 2(H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ +4\mathcal{R}e[(1 + V_L - V_R)(S_L^* - S_R^*)] \frac{\sqrt{q^2}}{m_I} [H_{0t}'(H_{0t} - \cos\theta H_{00})^2] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{0t} - \cos\theta H_{00})^2\right] \\ -4\mathcal{R}e[(|1 + V_L|V_R^*)] \left[\sin^2\theta H_{-+} H_{+-} + (H_{$$

$ar{B}^* o extstyle{ extstyle P} l ar{ u}_l$ decay processes

Motivation

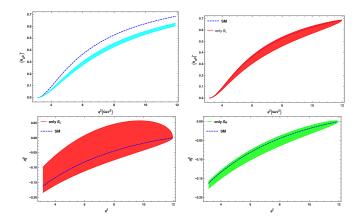
The differential decay rate can be written explicitly as,


$$\frac{d\Gamma}{dq^{2}} = \frac{G_{F}^{2} V_{q'b}|^{2} |p|^{2}}{96\pi^{3} m_{B^{*}}^{2}} \frac{1}{3} q^{2} (1 - \frac{m_{l}^{2}}{q^{2}})^{2} \left[(|1 + V_{L}|^{2} + |V_{R}|^{2}) \right]
[H_{-+}^{2} + H_{+-}^{2} + H_{00}^{2}) (1 + \frac{m_{l}^{2}}{2q^{2}}) + \frac{3m_{l}^{2}}{2q^{2}} H_{0t}^{2} \right]
-2\mathcal{R}e[(1 + V_{L})V_{R}^{*}] \left[(2H_{-+}H_{+-} + H_{00}^{2}) (1 + \frac{2m_{l}^{2}}{2q^{2}}) + \frac{3m_{l}^{2}}{2q^{2}} H_{0t}^{2} \right]
+3\mathcal{R}e[(1 + V_{L} - V_{R})(S_{L}^{*} - S_{R}^{*}) H_{0t}^{\prime} H_{0t} \frac{m_{l}}{\sqrt{q^{2}}} + \frac{3}{2} |S_{L} - S_{R}|^{2} H_{0t}^{\prime} \right]$$

Where, $H_{(+-,-+,00,0t)}$ are the helicity amplitudes which are the functions of form factors.

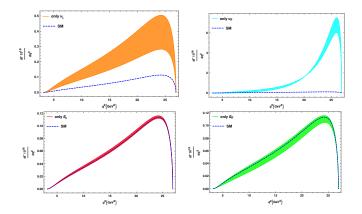
• The Lepton non-universality parameter is defined as, $R_P^*(q^2) = \frac{d\Gamma(B^* \to P\tau^- \bar{\nu_\tau})/dq^2}{d\Gamma(B^* \to Pl'^- \bar{\nu_\tau})/dq^2}$

• Lepton spin asymmetry parameter: $A_{\lambda}^P(q^2) = \frac{d\Gamma[\lambda_i = -1/2]/dq^2 - d\Gamma[\lambda_i = 1/2]/dq^2}{d\Gamma[\lambda_j = -1/2]/dq^2 + d\Gamma[\lambda_j = 1/2]/dq^2}$


The differential decay rates in presence of various new coefficients are,

- In presence of V_L only: $2.0608 \times 10^{-14} \to 2.05402 \times 10^{-14}$
- ullet In presence of V_R only: $1.91578 imes 10^{-14}
 ightarrow 1.95402 imes 10^{-14}$
- In presence of S_R only: $3.44565 \times 10^{-15} \rightarrow 4.77632 \times 10^{-15}$

These values shows significant variation from the corresponding SM value, 4.61326×10^{-15}



$ar{B}^* o D^0 I ar{ u}_I$ decay process

 q^2 variation of R_D^* in presence of V_R coefficient only (top-left panel), S_L coefficient only (top-right panel) and q^2 variation of A_λ^D in presence of S_L coefficient only(bottom-left panel), S_R coefficient only(bottom-right panel).

$ar{B}^* ightarrow \pi^0 I ar{ u}_I$ decay process

 q^2 variation of Branching ratio in presence of V_L coefficient only(top-left panel), V_R coefficient only(top-right panel), S_L coefficient only(bottom-left panel), S_R coefficient only(bottom-right panel).

 q^2 variation of $R_{\pi^0}^*$ in presence of V_R coefficient only(top-left panel), S_R coefficient only(top-right panel), q^2 variation of A_{λ}^{π} in presence of S_L coefficient only(bottom-left panel), S_R coefficient only(bottom-right panel).

Conclusion

- We have studied $\bar{B}^* \to Pl\bar{\nu}_l$ decay process in a model independent way.
- We considered the new couplings to be complex. Considering one coefficient at a time the allowed parameter space of the new coefficients was obtained.
- In presence of individual complex Wilson coefficient we have studied their effects on various parameters associated with $\bar{B}^* \to P l \bar{\nu}_l$ decay processes.
- We have shown the q^2 variation of Branching ratio, LNU parameter and Lepton spin asymmetry in presence of NP.

Thank You!!

