Angularity Distributions at Next-to-Leading Order

Ankita Budhraja1, Ambar Jain1, Massimiliano Procura2

1Indian Institute of Science Education and Research, Bhopal
2Theoretical Physics Department, CERN, Geneva, Switzerland
2Fakultät für Physik, Universität Wien, Austria

XXIII DAE-BRNS HEP SYMPOSIUM 2018

December 14, 2018
Event shapes are Infrared and Collinear (IRC) safe jet observables that measure the geometric properties of energy flow in QCD events.

Bell, et.al. 1808.07867

Thrust- \[\tau = \max_{\hat{n}} \frac{1}{Q} \sum_{i \in X} |\vec{p}_i \cdot \hat{n}| \]

Jet Broadening- \[B = \frac{1}{Q} \sum_{i \in X} |p_{i\perp}| \]
Event shapes are Infrared and Collinear (IRC) safe jet observables that measure the geometric properties of energy flow in QCD events.

- **Thrust-** \[\tau = \frac{1}{Q} \left[\sum_{i \in L} |p_i^+| + \sum_{i \in R} |p_i^-| \right] \]

- **Jet Broadening-** \[B = \frac{1}{Q} \left[\sum_{i \in L} \sqrt{p_i^+ p_i^-} + \sum_{i \in R} \sqrt{p_i^- p_i^+} \right] \]

\[p^\pm = p^0 \mp p^3 \]
Jet Angularities

Thrust:
\[\tau = \frac{1}{Q} \left[\sum_{i \in L} |p_i^+| + \sum_{i \in R} |p_i^-| \right] \]

Broadening:
\[B = \frac{1}{Q} \left[\sum_{i \in L} \sqrt{p_i^+ p_i^-} + \sum_{i \in R} \sqrt{p_i^- p_i^+} \right] \]

- Berger, Kucs, Sterman, 03

\[\tau_b = \frac{1}{Q} \left[\sum_{i \in L} (p_i^+)^\frac{1+b}{2} (p_i^-)^\frac{1-b}{2} + \sum_{i \in R} (p_i^+)^\frac{1-b}{2} (p_i^-)^\frac{1+b}{2} \right] \quad (1) \]

- For Infrared safety : \(-1 < b < \infty\).
- Generalization to ‘thrust’ \((b = 1)\) and jet ‘broadening’ \((b = 0)\).
- Varying ‘\(b\)’ changes the sensitivity to the substructure of jets.
Jet Angularities are novel observables that allow us to transform between recoil-insensitive to recoil-sensitive observables in a continuous manner.
Status of event shapes

Thrust*Broadening# Angularities@
b>1
(NLL) (N3LL')
b=-1 b=0 b=1

*Catani, Trentadue, Turnock, Webber, 93; Florian, Grazzini, 04; Schwartz, 07; Becher, Schwartz, 08; Abbate, Fickinger, Hoang, Mateu, Stewart, 10

#Dokshitzer, Lucenti, Marchesini, Salam, 98; Becher, Bell, Neubert, 11; Chiu, Jain, Neill, Rothstein, 11

@Hornig, Lee, Ovanesyan, 09

ankitab@iiserb.ac.in

Angularity Distributions at Next-to-Leading Order
Figure: Factorization of the hard scattering process into individual hard, jet and soft functions.

\[\mathcal{L}_{SCET} = \mathcal{L}_{n\text{-coll}} J + \mathcal{L}_{\bar{n}\text{-coll}} \bar{J} + \mathcal{L}_{\text{soft}} S + \text{power-correction} \]

\[d\sigma = \text{Hard} \cdot J_n \otimes \bar{J}_{\bar{n}} \otimes S \]

- Factorization properties of QCD in the soft/collinear limit allows for the separation of the process into hard, jet and soft sectors.
- All factorized sectors depend only on a single dynamical scale and the scale of factorization.
Jet Angularity Cross-Section

- \(b > 0 \)

\[
\left[\frac{1}{\sigma_0} \frac{d\sigma}{d\tau} \right]_{\text{sing}}^{\text{NLO}} = \frac{\alpha_s \ C_F}{\pi} \left\{ -\frac{3}{(1+b)} \frac{1}{\tau} - \frac{4}{1+b} \frac{\ln \tau}{\tau} \right\} + \frac{4}{b (1+b)} \sum_{n=1}^{N=[1/b]} \frac{c_n}{\tau^{1-nb}} \\
\text{with,} \\
\quad c_1 = b, \quad c_2 = -\frac{1}{2} b(1+2b), \quad c_3 = \frac{1}{6} b(2+9b+9b^2), \ldots
\]

- \(b < 0 \)

\[
\left[\frac{1}{\sigma_0} \frac{d\sigma}{d\tau} \right]_{\text{sing}}^{\text{NLO}} = \frac{\alpha_s \ C_F}{\pi} \left\{ -\frac{3}{(1+b)} \frac{1}{\tau} - \frac{4}{(1+b)^2} \frac{\ln \tau}{\tau} \right\} - \frac{4}{b (1+b)} \sum_{n=1}^{N=[1/|b|]-1} \frac{c'_n}{\tau^{1+nb}} \\
\text{with,} \\
\quad c'_1 = -\frac{b}{1+b}, \quad c'_2 = \frac{b(1-b)}{2(1+b)^2}, \quad c'_3 = \frac{b(-2+5b-2b^2)}{6(1+b)^3}, \ldots
\]

where, \([\ldots]\) signifies an integer strictly less than \(1/b\) for \(b > 0\) and \(1/|b| - 1\) for \(b < 0\) case.
Estimation of the size of the corrections

<table>
<thead>
<tr>
<th>b</th>
<th>N = max(n)</th>
<th>% correction for $\tau \sim 0.05$</th>
<th>% correction for $\tau \sim 0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0.25</td>
<td>3</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>∞</td>
<td>31</td>
<td>45</td>
</tr>
<tr>
<td>-0.2</td>
<td>3</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>-0.3</td>
<td>2</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>-0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: Numerical estimation of the size of subleading corrections in the peak region $\sim 0.05 - 0.1$, for different values of b. For a given b value, the maximum value of n up-to which the correction terms are singular is represented by the values given in the second column of the table.
Comparison to numerical data from \texttt{EVENT2} generator

\textbf{Figure:} Differences between \texttt{EVENT2} and our results from broadening-like factorization at NLO for $d\sigma/d\log_{10}\tau$ for different b values.
• Jet angularities provide a novel way of looking into the substructure which remains unexposed while looking at a single event shape observable.

• A broadening-like factorization for angularities provides the correct distribution for all $b > -1$ angularities while a thrust-like factorization works only in a certain range.

• The fixed order angularity distributions with a broadening-like factorization suggest that the recoil effects are always important for $b < 1$ angularities.

• The subleading singular contribution in our analysis for $0 < b < 1$ provide a significant contribution in the peak region. This is expected to effect the resummation of these observables and hence the extraction of the strong coupling.

