Testing partial μ - τ Reflection Symmetry at DUNE and Hyper-Kamiokande

Deepthi K N

Mahindra Ecole Centrale, Hyderabad, INDIA

December 14, 2018

Collaborators: Prof. Anjan Joshipura, Prof. Srubabati Goswami, Newton Nath, Kaustubh Chakraborty based on *Phys. Rev. D 98, 075031 (2018)*

Contents

- 1. Neutrino Oscillations and Current Status
- 2. Motivation
- 3. Partial $\mu-\tau$ reflection symmetry
- 4. Model Predictions
- 5. Testing correlations at DUNE and Hyper-K
- 6. Results and Conclusions

Neutrino Oscillations and

Current Status

Neutrino Oscillations and Current Status

- Neutrino oscillations are well established by phenomenal experiments like Super-Kamiokande, SNO, KamLAND, K2K, MINOS etc.
- The probability of transition

$$P_{\alpha\beta} = P_{\alpha\beta}(\Delta m_{21}^2, |\Delta m_{31}^2|, \theta_{12}, \theta_{13}, \theta_{23}, \delta_{\text{CP}}; E, L, V(x)),$$

[Nufit 4.0 (Nov 2018)]

	Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 4.7$)	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \to 0.350$	$0.310^{+0.013}_{-0.012}$	$0.275 \to 0.350$
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$
$\sin^2 \theta_{23}$	$0.580^{+0.017}_{-0.021}$	$0.418 \rightarrow 0.627$	$0.584^{+0.016}_{-0.020}$	$0.423 \rightarrow 0.629$
$\theta_{23}/^{\circ}$	$49.6^{+1.0}_{-1.2}$	$40.3 \rightarrow 52.4$	$49.8^{+1.0}_{-1.1}$	$40.6 \rightarrow 52.5$
$\sin^2 \theta_{13}$	$0.02241^{+0.00065}_{-0.00065}$	$0.02045 \to 0.02439$	$0.02264^{+0.00066}_{-0.00066}$	$0.02068 \to 0.02463$
$\theta_{13}/^{\circ}$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$	$8.65^{+0.13}_{-0.13}$	$8.27 \rightarrow 9.03$
$\delta_{\mathrm{CP}}/^{\circ}$	215^{+40}_{-29}	$125 \rightarrow 392$	284^{+27}_{-29}	$196 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.032}$	$+2.427 \rightarrow +2.625$	$-2.512^{+0.034}_{-0.032}$	$-2.611 \rightarrow -2.412$

Major Unknowns and Puzzles

Unknowns

- 1. The sign of Δm_{31}^2 i.e. whether $\Delta m_{31}^2 > 0 \implies$ Normal mass ordering. $\Delta m_{31}^2 < 0 \implies$ Inverted mass ordering.
- 2. The octant of θ_{23} i.e. if $\theta_{23} > 45^{\circ}$ Higher Octant (HO). $\theta_{23} < 45^{\circ}$ Lower Octant (HO).
- 3. The Dirac CP phase δ_{CP} -[-180, 180] $\delta_{CP}=0,\pm180^{\circ}$ (CP conserving). $\delta_{CP}=\pm90^{\circ}$ (maximal CP violation).
- Flavour Puzzles: Tiny neutrino masses? Origin of fermion mixing (CKM and PMNS)? Reason for large lepton mixing? Origin of CP violation in the quark (and lepton) sectors?
- Various symmetry based approaches have been successful in predicting the structure of the leptonic mixing matrix and the interrelations among these unknown quantities.

Motivation

Why μ - τ reflection Symmetry?

ullet In Standard parametrization U_{PMNS}

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{\mathrm{CP}}} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{\mathrm{CP}}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\mathrm{CP}}} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{\mathrm{CP}}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\mathrm{CP}}} & c_{13}c_{23} \end{pmatrix}$$

• $|U_{\mu 1}| \simeq |U_{\tau 1}|$, $|U_{\mu 2}| \simeq |U_{\tau 2}|$, $|U_{\mu 3}| \simeq |U_{\tau 3}|$ to a reasonably good degree of accuracy.

Motivation

• PMNS matrix at the 3σ level :

For $\Delta m_{31}^2 > 0$:

$$|U| \simeq \begin{pmatrix} 0.79 - 0.85 & 0.50 - 0.59 & 0.13 - 0.17 \\ 0.19 - 0.56 & 0.41 - 0.74 & 0.60 - 0.78 \\ 0.19 - 0.56 & 0.41 - 0.74 & 0.60 - 0.78 \end{pmatrix};$$

For $\Delta m_{31}^2 < 0$:

$$|U| \simeq \begin{pmatrix} 0.89 - 0.85 & 0.50 - 0.59 & 0.13 - 0.17 \\ 0.19 - 0.56 & 0.40 - 0.73 & 0.61 - 0.79 \\ 0.20 - 0.56 & 0.41 - 0.74 & 0.59 - 0.78 \end{pmatrix};$$

5

$\mu - \tau$ reflection Symmetry

- \bullet μau reflection symmetry : $|U_{\mu i}| = |U_{ au i}|$ (for all i=1,2,3)
- Neutrino mass term is unchanged under the tranformation $\nu_e \to \nu_e^c$, $\nu_\mu \to \nu_\tau^c$, $\nu_\tau \to \nu_\mu^c \implies \mu \tau$ reflection Symmetry.
- Predictions :

$$|U_{\mu i}| = |U_{\tau i}| \iff \begin{cases} \theta_{23} = \frac{\pi}{4}, & \theta_{13} = 0; \\ \text{or} \\ \theta_{23} = \frac{\pi}{4}, & \delta = \pm \frac{\pi}{2}; \end{cases}$$

- First condition is ruled out because $\theta_{13} \neq 0$.
- Second condition $\theta_{23} = \frac{\pi}{4}$, $\delta_{CP} = \pm \frac{\pi}{2}$ is still allowed at 3σ .
- Current best fit value of θ_{23} is non-maximal for NH and IH \Longrightarrow deviation from $\mu-\tau$ reflection symmetry.

6

Partial $\mu - \tau$ reflection symmetry

Partial $\mu - \tau$ reflection symmetry and its predictions

- Partial $\mu \tau$ reflection symmetry $\implies |U_{\mu i}| = |U_{\tau i}|$ holds only for a single column.
- Almost all discrete subgroups of SU(3) (few exceptions) having three dimensional irreducable representations, display partial $\mu-\tau$ symmetry. Here for $G_{\nu}=Z_{2}$ and $G_{\nu}=Z_{m}$
- For $|U_{\mu 1}| = |U_{\tau 1}|$

C1:
$$\cos \delta_{CP} = \frac{(c_{23}^2 - s_{23}^2)(c_{12}^2 s_{13}^2 - s_{12}^2)}{4c_{12}s_{12}c_{23}s_{23}s_{13}}$$
, and $\cos_{12}^2 \cos_{13}^2 = \frac{2}{3}$ (1)

• For $|U_{\mu 2}| = |U_{\tau 2}|$

C2:
$$\cos \delta_{CP} = \frac{(c_{23}^2 - c_{23}^2)(c_{12}^2 - c_{12}^2 c_{13}^2)}{4c_{12}s_{12}c_{23}s_{23}s_{13}}$$
, and $\sin_{12}^2 \cos_{13}^2 = \frac{1}{3}$. (2)

ullet $|U_{\mu 3}|=|U_{ au 3}| \implies heta_{23}$ - maximal and $\delta_{\it CP}$ - unrestricted.

- Red solid(dashed) contours 3σ regions of global oscillation data for NH (IH).
- Blue model predictions C1 (left) and C2 (right).
- Each θ_{23} corresponds to two CP phases δ_{CP} , $(360^{\circ} \delta_{CP})$.

Testing correlations at DUNE

and Hyper-K

Deep Underground Neutrino Experiment

- Utilizes Long baseline Neutrino Facility (LBNF) for high intensity neutrino beam and the infrastructure required for DUNE.
- Baseline(L): 1300 km. Fermilab to the Homestake mine in South Dakota.
- Near neutrino detector (NND): NOMAD-inspired fine grained tracker (FGT),
 0.5 km downstream of the target.
- Proposed Far detector (FD): 40 kton LArTPC.
- Initial proton beam power is 1.2 MW (1 \times 10²¹ POT/year), later increased to 2.3 MW.
- ullet Proton beam energy : 120 GeV and u_{μ} beam energy : 0.5 < E_{ν} < 8 GeV.
- We assume 5 years of running time in both neutrino and antineutrino beam modes.

Hyper-Kamiokande Experiment

- The proton beam power of 1.3 MW, giving a total of 27×10^{21} POT.
- Total run-time : 10 years.

Simulation Details

Osc. param.	True values	Test values
$\sin^2 \theta_{13}$	0.0219	0.0197-0.0244
$\sin^2\theta_{12}$	0.306	0.272-0.346
θ_{23}	39°-51°	39°–51°
$\Delta m_{21}^2 ({\rm eV}^2)$	7.50×10^{-5}	Fixed
$\Delta m_{31}^2 ({\rm eV}^2)$	2.50×10^{-3}	$(2.35-2.65) \times 10^{-3}$
δ_{CP}	(0-360)°	Symmetry predictions

- The data corresponding to each experiment is generated by considering the true values of the oscillation parameters given in the table.
- In theoretical fit, we calculate test events based on model predictions C1 and C2.
- Marginalized over $\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$, $\sin^2 \theta_{12}$, $|\Delta m_{31}^2|$.
- Simulation and analysis using GLoBES package.

Results and Conclusions

Differentiating C1 and C2 predictions

- True δ_{CP} values are calculated using the correlation C1 and test values C2.
- Solid blue curves : $0^{\circ} < \delta_{CP} < 180^{\circ}$.
- Dashes blue curves : $(360^{\circ} \delta_{CP})$ i.e. $180^{\circ} < \delta_{CP} < 360^{\circ}$.

Conclusions

- Studied partial reflection symmetry of the leptonic mixing matrix.
- Analysed the correlations among $\sin^2\theta_{23} \delta_{CP}$ predicted by the symmetries.
- Verified the testability of these symmetries at DUNE and Hyper-K.

Thank you !!!