Quarkonium and heavy-flavour measurements with ALICE at the LHC

Indranil Das
(for the ALICE Collaboration)
Saha Institute of Nuclear Physics
Science and Engineering Research Board, India
Motivation

- Nuclear matter at extreme energy density forms a Quark-Gluon Plasma
- Heavy quarks are produced at the first instant of collisions
- Interact with the hot and dense QCD medium
 - Quarkonium
 - Suppression due to colour screening
 - (Re)generation during the QGP evolution or at the phase boundary
 - Elliptic flow
 - Heavy-Flavour
 - Collisonal and radiative energy loss
 - Energy loss dependence on a) medium density, b) colour charge and c) quark mass
- Cold Nuclear Matter effects
 - Nuclear parton shadowing/gluon saturation
 - Parton energy loss
 - Nuclear break-up

References:
- Andronic et al., EPJ C 76 (2016) 107
- Matsui and Satz, PLB 178 (1986) 416
- Poskanzer and Volosin, PRC 58 (1998) 1671
- Djordjevic et al., NPA 783 (2007) 493

Quarkonia:
- Ashik Ikbal Sheikh
- Bharati Naik
- Renu Bala
- Samrangy Sadhu
- Sudhir Pandurang Rode

Heavy-Flavour:
- Anisa Khatun
- Dhananjaya Thakur
- Hushnud
- Wadut Shaikh

December 10-14 2018
Conference title
ALICE at the LHC: DEUTHER 2018, I. Das
A Large Ion Collider Experiment

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>$\sqrt{s_{\text{NN}}}$ (TeV)</th>
<th>L_{int} (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>2009-13</td>
<td>0.9, 2.76, 7, 8</td>
<td>200 μb$^{-1}$, 100 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2015-17</td>
<td>5.02</td>
<td>1.3 pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2015-18</td>
<td>13</td>
<td>35 pb$^{-1}$</td>
</tr>
<tr>
<td>p-Pb</td>
<td>2013</td>
<td>5.02</td>
<td>15 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>5.02, 8.16</td>
<td>3 nb$^{-1}$, 25 nb$^{-1}$</td>
</tr>
<tr>
<td>Xe-Xe</td>
<td>2017</td>
<td>5.44</td>
<td>0.3 μb$^{-1}$</td>
</tr>
<tr>
<td>Pb-Pb</td>
<td>2010,11</td>
<td>2.76</td>
<td>75 μb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>5.02</td>
<td>250 μb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>5.02</td>
<td>536 μb$^{-1}$</td>
</tr>
</tbody>
</table>

* Approximate value of luminosity recorded in ALICE

* Approximate value of luminosity recorded in ALICE
Quarkonium and heavy-flavour measurements with ALICE at the LHC, DAE HEP 2018, I.Das

\[p \rightarrow p \]
The production cross section of heavy quarks as measured in ALICE agrees with the world data.

The heavy quark cross section increases as a function of \sqrt{s} in agreement with the theory calculation.

The differential production cross section of heavy-flavour also agrees with theory calculations within uncertainties.
Quarkonium production in pp collisions

- An extensive quarkonium study at various energies, thanks to LHC and stable ALICE data taking.
- The model prediction for the $\psi(2S)/J/\psi$ cross section slope does not cover the low-p_T otherwise in agreement with data.
- CGC+NRQCD based model is now able to properly describe the low p_T region.
Quarkonium production in pp collisions

- CGC+NRQCD based model is now able to properly describe the low p_T region.
- The cross section ratio for $\psi(2S)/J/\psi$ is found to be independent of colliding energy as a function of p_T and rapidity.
- The 2S/1S cross section ratio shows an increasing trend with p_T and no rapidity dependence.
- ALICE results are in agreement with other LHC experiments (shown only for Υ production).
Quarkonium and heavy-flavour measurements with ALICE at the LHC, DAE HEP 2018, I. Das
Quarkonium production in p-Pb

- Stronger suppression of J/ψ is observed at forward rapidity, while R_{pPb} is compatible with unity at backward rapidity.
- ALICE and LHCb results are in agreement.
- Models based on different shadowing implementations, CGC, energy loss, transport models and comovers fairly describe the data.
- The p_T dependence of R_{pPb} shows an increase from low to high p_T at both forward, mid and backward rapidity.
Quarkonium production in p-Pb

- A similar suppression as for J/ψ is observed at forward rapidity for $\psi(2S)$ and $\Upsilon(1S)$. The J/ψ and $\Upsilon(1S)$ R_{pPb} are compatible with no modification at backward rapidity.
- At backward rapidity, final-state effects needed to explain the $\psi(2S)$ behaviour.
- The p_T dependence of Υ R_{pPb} shows an increase from low to high p_T at both forward and backward rapidity, where the model prediction suggests flat distribution.
Quarkonium flow in p-Pb

- Angular correlations between forward and backward J/ψ and charged hadrons separated by rapidity gap of at least 1.5.
- Similar long range correlation as observed for double ridge structure at $\Delta \phi = 0$ and $\Delta \phi = \pi$.
- A significance of 5σ reported for the v_2 measured between 3 and 6 GeV/c.
- The J/ψ v_2 measured for p-Pb is comparable to that in Pb-Pb although the underlying mechanism is not known to be also same or different.
- The transport model calculations give very small v_2 over the full p_T range.
The nuclear modification factor is compatible with unity at forward rapidity.

The R_{pPb} of heavy-flavor decay muons at high p_T is also compatible with unity at backward rapidity, but above unity by more than 2σ in $2.5 < p_T < 3.5$ GeV/c.

The NLO calculation with shadowing can reproduce the data at both forward and backward rapidity.

The coherent scattering model based on CNM energy loss and k_T broadening can explain the forward rapidity R_{pPb}, while for backward rapidity incoherent multiple scattering models can reproduce the data.
Heavy-flavour production in p-Pb

- The average R_{pPb} of prompt D^0, D^+ and D^{**} mesons is compatible with unity and can be explained by the theoretical calculations that include initial-state effects.
- The v_2 of heavy-flavour decay electrons in high-multiplicity events are above 5σ significance and found similar to those of forward rapidity heavy-flavour decay muons.
- The R_{pPb} of beauty-hadron decay to electron is compatible with unity for $1 < p_T < 8$ GeV/c.

Further: oral presentation by Bharti and Renu and poster presentation by Ashik
Quarkonium and heavy-flavour measurements with ALICE at the LHC, DAE HEP 2018, I.Das
• \(J/\psi \) suppression is visible at RHIC whereas at the LHC there is an interplay of suppression and (re)generation.
• Most precise result in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) and similar to that at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \).
• The \(J/\psi \) \(R_{AA} \) is found to be of similar magnitude for Pb-Pb and Xe-Xe collisions at forward rapidity, however no suppression is observed at mid-rapidity for Xe-Xe.
• A stronger suppression factor \(\left(\frac{R_{PbPb}}{R_{pPb} \times R_{Pbp}} \right) \) is found at high-\(p_T \) by combining the \(J/\psi \) p-Pb and Pb-Pb forward rapidity results.
Quarkonium predictions in Pb-Pb

- $p_T > 0.3$ GeV/c to suppress the contribution from photo-production
- The brackets represent the remaining contribution

- All models can describe the data but with larger uncertainties.

Statistical Hadronization:
Andronic et al., Nucl. Phys. A 904-905 (2013) 535c

Co-movers interaction model:

Transport model (TM1):

Transport model (TM2):
A strong rapidity dependence is measured for \(J/\psi R_{AA} \) which shows a trend opposite to that of shadowing predictions.

The multi-differential measurement of \(J/\psi R_{AA} \) as a function of centrality, \(p_T \), and rapidity is ongoing and will provide more insight into the interplay between suppression and (re)generation in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \).
Quarkonium in Pb-Pb

arXiv: 1805.04387

- Transport models by Zhou et al. (TM2) and Rapp et al. (TM1) and the anisotropic hydrodynamic model by Strickland et al. qualitatively reproduce the centrality dependence.
- The anisotropic hydrodynamic model by Strickland et al. can describe the rapidity dependence of R_{AA}, but hint of different trend is observed.
- The p_T dependence of $\Upsilon(1S)$ R_{AA} in Pb-Pb collisions is described by the transport model and anisotropic hydrodynamics model.
- Transport model, with or without (re)generation effect can describe the data.
- The ratio of R_{AA} for $\Upsilon(2S)$ to $\Upsilon(1S)$ is 0.28 ± 0.12 (stat.)±0.06 (sys.) \rightarrow sequential suppression.
Both the bound state charmonium and prompt open-charm mesons show non-zero elliptic flow.

The transport model predictions are not able to describe the data in the high p_T region.

A non-zero v_3 of J/ψ (3.7σ significance) has been measured for the first time.
Heavy-flavour production in Pb-Pb

- A strong suppression is observed for the heavy-flavour muon R_{AA} for central collisions.
- A positive heavy-flavour v_2 is measured using scalar product and two particle Q cumulants in semi-central collisions with more than 3σ significance for $3 < p_T < 5$ GeV/c.
- The model predictions based on Boltzmann (BAMPS) and Langevin (TAMU) transport equations consider collisional energy loss, they can explain the elliptic flow measurements.
- Both results can be also explained by MC@sHQ+EPOS which considers collisional and radiative energy loss.
Heavy-flavour in Pb-Pb

A strong suppression is observed for the D-meson R_{AA} for central collisions and $p_T > 3$ GeV/c.

The elliptic flow is stronger in the interval $2 < p_T < 4$ GeV/c.

The R_{AA} and v_2 observables together set stringent constraints to model calculations and charm diffusion coefficient.

Further: poster presentation by Sudhir and Samrangy
Quarkonium and heavy-flavour measurements with ALICE at the LHC, DAE HEP 2018, I. Das
Quarkonium as a function of multiplicity in pp

- Finite spatial extension (non-zero impact parameter) for elementary parton-parton interactions.
- Formation of colour ropes or flux tubes—strings.
- $N_{\text{collisions}}^{\text{parton-parton}} \propto N_{\text{strings}}$.
- Strings can overlap in transverse direction resulting in a reduction of soft-particle production, $\frac{dN_{\text{ch}}}{d\eta} \sim \sqrt{N_{\text{strings}}}$.
- Hard particle production, $N_{J/\psi} \propto N_{\text{coll}} \propto N_{\text{strings}}$.
- The high multiplicity pp events are similar to pA.
- NA3 and E866 collaboration results used for:
 $R_{J/\psi}^{pA} = N_{\text{coll}} A^{\alpha - 1}$ [$\alpha = 0.95$ from E866]
- Compilation of various hadron-nuclear results [NPA395(1983)482] :
 $R_{h}^{pA} = 1 + \beta (N_{\text{coll}} - 1)$ with $[0.5 < \beta < 0.65]$
- Finally using, $N_{\text{coll}} \approx \frac{\sigma_{pp}}{\pi r_{0}^{2}} A^{1/3}$ for pA collisions, the dependency is extracted for $R_{J/\psi}^{pA} \propto R_{h}^{pA}$ and applied for pp collisions.
A detailed study has been performed to explore the rapidity dependence at various energies for different colliding systems and different resonances.

A linear increase has been observed for forward rapidity J/ψ vs mid-rapidity multiplicity compared to the faster than linear increase of midrapidity J/ψ with multiplicity in mid-rapidity.

The increase of the bottom production as function of charged particle multiplicity is found to be similar to that observed for charm production. Similar observation in di-electron spectra.
Heavy-quark as a function of multiplicity in p-Pb

- An increase of J/ψ yield with normalized $\frac{dN_{ch}}{d\eta}$ is observed at backward rapidity, however in forward rapidity a hint of saturation is observed.
- The normalized $J/\psi < p_T >$ increases at low charged-particle multiplicity and saturates at high multiplicity events.
- A similar increase for heavy-flavour production has been measured as a function of charged-particle multiplicity.
Summary

• pp collisions
 • ALICE results are in agreement with the other LHC experiments and world data.
 • Theoretical calculations start to describe data over all p_T but polarisation is still a puzzle.

• p-Pb collisions
 • The nuclear modification factor can be explained by Cold Nuclear Matter effects.
 • A long-range correlation is observed: J/ψ v_2 in central p-Pb collisions.

• Heavy-ion collisions
 • Interplay of two main mechanisms: suppression and (re)generation for charmonium, whereas for bottomonium suppression plays dominant role with negligible (re)generation.
 • Observation of non-zero v_2 with higher precision and first look at non-zero v_3 for J/ψ.
 • A strong energy loss of open heavy flavours in central collisions.
 • The elliptic flow measurement of heavy-flavour together with R_{AA} set stringent constraints for modes.

• Heavy-quark as a function of multiplicity
 • The increase of quarkonium production as a function of charged-particle multiplicity exhibits no strong \sqrt{s} dependence and also found to be similar for charmonium and bottomonium.
 • An increase of bottom quark production compared to charm is observed in dielectron spectra for $p_T > 3$ GeV/c.
 • The production of D mesons shows a similar increase with charged-particle multiplicity.
ALICE upgrade

- ALICE is entering LS2 upgrade.
- ALICE will be able to collect pp and p-Pb data at 200 kHz and Pb-Pb 50 kHz in Run3 of LHC.
- ALICE plans to collect 10 nb$^{-1}$ of Pb-Pb data for a detailed understanding of QGP.
Thank you
Prompt, non-prompt and feed-down

In addition to (10-30)% B-decay production

Charmonium [A. Andronic et al., EPJC 76 (2016) 107]

Bottomonium

![Pie charts showing production fractions for different pT ranges.](image-url)
Predictions for charmonium v_2 in p-Pb

![Graph showing v_2 vs. p_T for charmonium in p-Pb collisions at 8.16 TeV mid-rapidity for 02-10% centrality. The graph includes data from ALICE and CMS for J/Ψ and $\Upsilon(2S)$.]
6.) Charm in pA Collisions:

- R_{pA} data consistent with shadowing

 But: large v_2

- Collectivity?

- small c-quark v_2

- very similar for charmonia

[R. Vogt]

[H. Li]

[Du+RR'18]