

XXIII DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2018 December 10 - 14, 2018

Quarkonium and heavy-flavour measurements with ALICE at the LHC

Indranil Das

(for the ALICE Collaboration)

Saha Institute of Nuclear Physics

Science and Engineering Research Board, India

()

Quarkonium and heavy-flavour measurements with ALICE at the LHC, DAE HEP 2018, I.Das

December 10-14 2018

Andronic et al., EPJ C 76 (2016) 107

Matsui and Satz, PLB 178 (1986) 416

Thews, Schroedter, Rafelski, PRC 63 (2001) 054905, Braun-Munzinger, and Stachel PLB 490 (2000) 196

Poskanzer and Volosin, PRC 58 (1998) 1671

Dokshitzer et al., PLB 519 (2001) 199, Armesto et al., PRD 69 (2004) 114003 • Collisional and radiative energy loss

• Energy loss dependence on a) medium density, b) colour charge and c) quark mass

• Nuclear matter at extreme energy density forms a Quark-Gluon Plasma

• Heavy quarks are produced at the first instant of collisions

• (Re)generation during the QGP evolution or at the phase boundary

• Interact with the hot and dense QCD medium

- Cold Nuclear Matter effects •
 - Nuclear parton shadowing/gluon saturation

• Suppression due to colour screening

• Parton energy loss

Motivation

Quarkonium

• Elliptic flow

Heavy-Flavour

Nuclear break-up

Heavy-Flavour :

- Ashik Ikbal Sheikh
- Bharati Naik
- Renu Bala
- Samrangy Sadhu
- Sudhir Pandurang Rode

Djordjevic et al., NPA 783 (2007) 493

Quarkonia :

- Anisa Khatun
- Dhananjaya Thakur
- Hushnud
- Wadut Shaikh

A Large Ion Collider Experiment

mee (GeV/c2)

ALICE

3

m_{μμ} (GeV/c²)

p → ← ●

р

р

- The production cross section of heavy quarks as measured in ALICE agrees with the world data.
- The heavy quark cross section increases as a function of \sqrt{s} in agreement with the theory calculation.
- The differential production cross section of heavy-flavour also agrees with theory calculations within uncertainties.

Quarkonium production in pp collisions ALICE J/ψ , $\sqrt{s} = 8 \text{ TeV}$ J/ψ . $\sqrt{s} = 7 \text{ TeV}$ J/ψ . $\sqrt{s} = 13 \text{ TeV}$ J/ψ . $\sqrt{s} = 13 \text{ TeV}$ $J/\psi, \sqrt{s} = 8 \text{ TeV}$ $J/\psi, \sqrt{s} = 7 \text{ TeV}$ - ALICE inclusive J/w, 2.5<y<4 10 ALICE inclusive J/ψ, 2.5<y<4</p> - ALICE inclusive J/w, 2.5<y<4 ALICE inclusive J/ψ 10 ALICE inclusive J/ψ ALICE inclusive J/ψ pp 1/s = 13 TeV pp √s = 8 TeV pp vis = 7 TeV pp (s = 13 TeV, p <30 GeV/c pp √s = 8 TeV, p_<20 GeV/c pp (s = 7 TeV, p < 20 GeV/c र्चे 10 L_{tet} = 3.2 pb⁻¹ ± 3.4% L_{av} = 1.2 pb⁻¹ ± 5.0% $L_{int} = 1.4 \text{ pb}^{-1} \pm 5.0\%$ L_{int} = 3.2 pb⁻¹ ± 3.4% L_{int} = 1.2 pb⁻¹ ± 5.0% L_{ee} = 1.4 pb⁻¹ ± 5.0% BR uncert .: 0.6% BR uncert : 0.6% BR uncert : 0.6% BR uncert.: 0.6% BR uncert.: 0.6% BR uncert.: 0.6% 10^{-2} NRQCD, Y-Q, Ma et al. 10 NRQCD, Y-Q, Ma et al. NROCD, Y-Q. Ma et al. + FONLL M. Cacciari et al. + FONLL M. Cacciari et al. + FONLL M. Cacciari et al. 92 NBOCD + CGC, Y-O, Ma et a NROCD + CGC, Y-O, Ma et a NROCD + CGC, Y-O, Ma et a NRQCD+CGC, Y-Q. Ma et al. NRQCD+CGC, Y-Q. Ma et al. NRQCD+CGC, Y-Q. Ma et al. + FONLL M. Cacciari et al. Š 15 20 2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 20 10 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4. 25 p, (GeV/c) p, (GeV/c) $\overline{}$ J/ψ , $\sqrt{s} = 5.02 \text{ TeV}$ J/ψ . $\sqrt{s} = 2.76 \text{ TeV}$ $\psi(2S), \sqrt{s} = 13 \text{ TeV}$ J/ψ . $\sqrt{s} = 5.02 \text{ TeV}$ J/ψ . $\sqrt{s} = 2.76 \text{ TeV}$ $\psi(2S), \sqrt{s} = 13 \text{ TeV}$ -- ALICE inclusive J/w, 2.5<y<4 ALICE inclusive J/ψ, 2.5<y<4 ALICE inclusive ψ(2S) --- ALICE inclusive J/w 32.2 (201)pp 1s = 5.02 TeV pp √s = 2.76 TeV pp is = 13 TeV, 2.5<y<4 pp vs = 5.02 TeV, p_<12 GeV/c pp 1s = 2.76 TeV, p_<8 GeV/c pp is = 13 TeV, p_<16 GeV/c Liss = 106.3 nb⁻¹ ± 2.1% L_{int} = 19.9 nb⁻¹ ± 1.9% $L_{iee} = 3.2 \text{ pb}^{-1} \pm 3.4\%$ au = 106.3 nb⁻¹ ± 2.1% w = 19.9 nb⁻¹ ± 1.9% ___ = 3.2 pb⁻¹ ± 3.4% 81.8 BR uncert.: 0.6% BR uncert .: 0.6% BR uncert.: 11% BR uncert : 0.6% BB uncert : 0.6% BR uncert : 11% 1.6 C77 NRQCD, Y-Q. Ma et al. NRQCD, Y-Q. Ma et al. NRQCD, Y-Q. Ma et al. 0.6 10 + FONLL M. Cacciari et al. + FONLL M. Cacciari et al. + FONLL M. Cacciari et al. EPJ NRQCD + CGC, Y-Q. Ma et al NRQCD + CGC, Y-Q. Ma et al. 0.4 NRQCD + CGC, Y-Q. Ma et al. NROCD+CGC, Y-O, Ma et al. NROCD+CGC, Y-O, Ma et al. NROCD+CGC, Y-Q. Ma et al. + FONLL M. Cacciari et al. FONLL M. Cacciari et al. + FONLL M. Cacciari et al. 0.2 + FONLL M. Cacciari et al. + FONLL M. Cacciari et al. + FONLL M. Cacciari et al. 0 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

4 6

10

ρ, (GeV/c)

- ALICE inclusive J/w, w(2S)

pp (s = 13 TeV, 2.5<y<4

L_{int} = 3.2 pb⁻¹

BR uncert.: 11%

NROCD, Y-O, Ma et al.

8 10 12 14 16

p, (GeV/c)

10 12 14 16

p_ (GeV/c)

 $\psi(2S)/J/\psi, \sqrt{s} = 13 \text{ TeV}$

1 2 3 4 5 6 7 4 6 10 p_{τ} (GeV/c) p. (GeV/c) $\psi(2S), \sqrt{s} = 8 \text{ TeV}$ $\psi(2S), \sqrt{s} = 7 \text{ TeV}$ ALICE inclusive w(2S) ALICE inclusive w(2S) pp 1s = 8 TeV, 2.5<y<4 pp √s = 7 TeV, 2.5<y<4 $L_{int} = 1.2 \text{ pb}^{'1} \pm 5.0\%$ $L_{int} = 1.4 \text{ pb}^{-1} \pm 5.0\%$ BR uncert.: 11% BR uncert.: 11% NRQCD, Y-Q. Ma et al. NRQCD, Y-Q. Ma et al. + FONLL M. Cacciari et al. + FONLL M. Cacciari et al. 10 NROCD+CGC, Y-O, Ma et al. NROCD+CGC, Y-O, Ma et al. + FONLL M. Cacciari et al. + FONLL M. Cacciari et al. 10 10 p, (GeV/c) p, (GeV/c) $\psi(2S)/J/\psi, \sqrt{s} = 8 \text{ TeV}$ $\psi(2S)/J/\psi, \sqrt{s} = 7 \text{ TeV}$ -- ALICE inclusive J/ψ, ψ(2S) -- ALICE inclusive J/ψ, ψ(2S) pp vs = 8 TeV, 2.5<y<4 pp (s = 7 TeV, 2.5<y<4 Lint = 1.2 pb⁻¹ L., = 1.4 pb BR uncert.: 11% BR uncert.: 11% NRQCD, Y-Q. Ma et al NROCD, Y-Q, Ma et al

p, (GeV/c)

ALI-PUB-123079

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 ALI-PUB-123083 An extensive quarkonium study at various energies, thanks to LHC and stable ALICE data taking.

 $\psi(2S), \sqrt{s} = 8 \text{ TeV}$

- ALICE inclusive w(2S)

Lim = 1.2 pb⁻¹ ± 5.0%

BR uncert.: 11%

NRQCD + CGC, Y-Q, Ma et al.

+ FONLL M. Cacciari et al.

pp 1s = 8 TeV, p_<12 GeV/c

The model prediction for the $\psi(2S)/J/\psi$ cross section slope does not cover the low- $p_{\rm T}$ otherwise in agreement with data.

 $\psi(2S), \sqrt{s} = 7 \text{ TeV}$

⁵1.8

1.6

0.8 0.6

0.4

0.2

- ALICE inclusive w(2S)

BR uncert.: 11%

NRQCD + CGC, Y-Q, Ma et al.

+ FONLL M. Cacciari et al.

Line = 1.4 pb⁻¹ ± 5.0%

pp vs = 7 TeV, p_<12 GeV/c

CGC+NRQCD based model is now able to properly describe the low $p_{\rm T}$ region.

• The 2S/1S cross section ratio shows a increasing trend with $p_{\rm T}$ and no rapidity dependence.

cember 10-14 2018

• ALICE results are in agreement with other LHC experiments (shown only for Y production).

T.T_DIIB_728

40

pp *\s* = 7 TeV

C74

HPJ

8

Quarkonium production in p-Pb

- Stronger suppression of J/ψ is observed at forward rapidity, while R_{pPb} is compatible with unity at backward rapidity.
- ALICE and LHCb results are in agreement.
- Models based on different shadowing implementations, CGC, energy loss, transport models and comovers fairly describe the
- The $p_{\rm T}$ dependence of $R_{\rm pPb}$ shows an increase from low to high $p_{\rm T}$ at both forward, mid and backward rapidity.

12

p_ (GeV/c)

Quarkonium production in p-Pb

Y_{cms REL-148399}

QM-2018 : Jhuma

12

14

p_{_} (GeV/*c*)

- A similar suppression as for J/ψ is observed at forward rapidity for $\psi(2S)$ and $\Upsilon(1S)$. The J/ ψ and $\Upsilon(1S)$ R_{pPb} are compatible with no modification at backward rapidity.
- At backward rapidity, final-state effects needed to explain the $\psi(2S)$ behaviour.
- The $p_{\rm T}$ dependence of $\Upsilon R_{\rm pPb}$ shows an increase from low to high $p_{\rm T}$ at both forward and backward rapidity, where the model prediction suggests flat distribution.

OM-2018 : Wadut

ц Ц

1.8

1.6

1.4

1.2

0.8 0.6

0.4

0.2

EPS09NLO + CEM (Voot et al., NPA 972(2018) 18

12

14

p_ (GeV/c)_{ALI-PREL-148392}

ALICE Preliminar

Inclusive $\Upsilon(1S) \rightarrow \mu^+ \mu^-$

p-Pb $\sqrt{s_{\text{NN}}}$ = 8.16 TeV, -4.46 < y_{ome} < -2.96

December 10-14 2018

with

Quarkonium flow in p-Pb

- Angular correlations between forward and backward J/ψ and charged hadrons separated by rapidity gap of at least 1.5.
- Similar long range correlation as observed for double ridge structure at $\Delta \phi = 0$ and $\Delta \phi = \pi$. PLB 719 (2013) 29
- A significance of 5σ reported for the v_2 measured between 3 and 6 GeV/c.
- The $J/\psi v_2$ measured for p-Pb is comparable to that in Pb-Pb although the underlying mechanism is not known to be also same or different.
- The transport model calculations give very small v_2 over the full p_T range.

Heavy-flavour production in p-Pb

- The nuclear modification factor is compatible with unity at forward rapidity.
- The $R_{\rm pPb}$ of heavy-flavor decay muons at high p_T is also compatible with unity at backward rapidity, but above unity by more than 2σ in $2.5 < p_T < 3.5$ GeV/*c*.
- The NLO calculation with shadowing can reproduce the data at both forward and backward rapidity.
- The coherent scattering model based on CNM energy loss and $k_{\rm T}$ broadening can explain the forward rapidity $R_{\rm pPb}$, while for backward rapidity incoherent multiple scattering models can reproduce the data.

Heavy-flavour production in p-Pb

- The average R_{pPb} of prompt D^0 , D^+ and D^{*+} mesons is compatible with unity and can be explained by the theoretical calculations that include initial-state effects.
- The v_2 of heavy-flavour decay electrons in high-multiplicity events are above 5σ significance and found similar to those of forward rapidity heavy-flavour decay muons.
- The R_{pPb} of beauty-hadron decay to electron is compatible with unity for $1 < p_T < 8 \text{ GeV}/c$.

Further : oral presentation by Bharti and Renu and poster presentation by Ashik

13

Quarkonium in Pb-Pb and Xe-Xe

- J/ ψ suppression is visible at RHIC whereas at the LHC there is an interplay of suppression and (re)generation.
- Most precise result in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV and similar to that at $\sqrt{s_{NN}} = 2.76$ TeV.
- The $J/\psi R_{AA}$ is found to be of similar magnitude for Pb-Pb and Xe-Xe collisions at forward rapidity, however no suppression is observed at mid-rapidity for Xe-Xe.
- A stronger suppression factor $\left(=\frac{R_{PbPb}}{R_{pPb} \times R_{Pbp}}\right)$ is found at high- p_T by combining the J/ ψ p-Pb and Pb-Pb forward rapidity results.

15

Quarkonium predictions in Pb-Pb

- $p_{\rm T} > 0.3 \text{ GeV}/c$ to suppress the contribution from photo-production
- The brackets represent the remaining contribution

Statistical Hadronization : [continuous blue shade] Andronic et al., Nucl. Phys. A 904-905 (2013) 535c

Co-movers interaction model : [continuous green shade] Ferreiro, Phys. Lett. B 731 (2014) 57

Transport model (TM1) : [slant red lines] Du and Rapp, Nucl. Phys. A 859 (2011) 114-125

Transport model (TM2) : [slant blue lines] Zhou et al., Phys. Rev C 89 no.5, 459 (2014) 054911

□ All models can describe the data but with larger uncertainties.

Quarkonium in Pb-Pb

- A strong rapidity dependence is measured for $J/\psi R_{AA}$ which shows a trend opposite to that of shadowing predictions.
- The multi-differential measurement of $J/\psi R_{AA}$ as a function of centrality, p_T , and rapidity is ongoing and will provide more insight into the interplay between suppression and (re)generation in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Quarkonium in Pb-Pb

- Transport models by Zhou et al. (TM2) and Rapp et al. (TM1) and the anisotropic hydrodynamic model by Strickland et al qualitatively reproduce the centrality dependence.
- The anisotropic hydrodynamic model by Strickland et al. can describe the rapidity dependence of R_{AA} , but hint of different trend is observed.
- The $p_{\rm T}$ dependence of $\Upsilon(1S) R_{\rm AA}$ in Pb-Pb collisions is described by the transport model and anisotropic hydrodynamics model.
- Transport model, with or without (re)generation effect can describe the data.
- The ratio of R_{AA} for $\Upsilon(2S)$ to $\Upsilon(1S)$ is 0.28 ± 0.12 (stat.) ±0.06 (sys.) \rightarrow sequential suppression.

Quarkonium flow in Pb-Pb

- Both the bound state charmonium and prompt open-charm mesons show non-zero elliptic flow.
- The transport model predictions are not able to describe the data in the high $p_{\rm T}$ region.
- A non-zero v_3 of J/ ψ (3.7 σ significance) has been measured for the first time.

Heavy-flavour production in Pb-Pb

- A strong suppression is observed for the heavy-flavour muon R_{AA} for central collisions.
- A positive heavy-flavour v_2 is measured using scalar product and two particle Q cumulants in semicentral collisions with more than 3σ significance for $3 < p_T < 5$ GeV/*c*.
- The model predictions based on Boltzmann (BAMPS) and Langevin (TAMU) transport equations consider collisional energy loss, they can explain the elliptic flow measurements.
- Both results can be also explained by MC@sHQ+EPOS which considers collisional and radiative energy loss.

Heavy-flavour in Pb-Pb

- A strong suppression is observed for the D-meson R_{AA} for central collisions and $p_T > 3$ GeV/c.
- The elliptic flow is stronger in the interval $2 < p_T < 4$ GeV/c.
- The R_{AA} and v_2 observables together set stringent constraints to model calculations and charm diffusion coefficient.

Further : poster presentation by Sudhir and Samrangy

21

ALICE

Quarkonium as a function of multiplicity in pp

PLB 712 (2012) 165.

- Finite spatial extension (non-zero impact parameter) for elementary parton-parton interactions.
- Formation of colour ropes or flux tubes—strings.
 N^{collisions}_{parton-parton} ∝ N_{strings}.
- Strings can overlap in transverse direction resulting in a reduction of soft-particle production, $\frac{dN_{ch}}{dn} \sim$

 $\sqrt{N_{strings}}$.

- Hard particle production, $N_{J/\psi} \propto N^{coll} \propto N_{strings}.$

- The high multiplicity pp events are similar to pA.
- NA3 and E866 collaboration results used for : $R_{l/\psi}^{pA} = N_{coll}A^{\alpha-1} [\alpha = 0.95 \text{ from E866}]$
- Compilation of various hadron-nuclear results [NPA395(1983)482] :

 $R_h^{pA} = 1 + \beta (N_{coll} - 1)$ with $[0.5 < \beta < 0.65]$

• Finally using, $N_{coll} \approx \frac{\sigma_{in}^{pp}}{\pi r_0^2} A^{1/3}$ for pA collisions, the dependency is extracted for $R_{J/\psi}^{pA} \propto R_h^{pA}$ and applied for pp collisions

14 - 12 - 2018

 $\overline{23}$

Quarkonium as a function of multiplicity in pp

- A detailed study has been performed to explore the rapidity dependence at various energies for different colliding systems and different resonances.
- A linear increase has been observed for forward rapidity J/ψ vs mid-rapidity multiplicity compared to the faster than linear increase of midrapidity J/ψ with multiplicity in mid-rapidity.
- The increase of the bottom production as function of charged particle multiplicity is found to be similar to that observed for charm production. Similar observation in di-electron spectra.

ALI-PUB-105454

- The normalized $J/\psi < p_T >$ increases at low chargedparticle multiplicity and saturates at high multiplicity events.
- A similar increase for heavy-flavour production has been measured as a function of charged-particle multiplicity.

Quarkonium and heavy-flavour measurements with ALICE at the LHC, DAE HEP 2018, I.Das

8

 $(dN_{ch}/d\eta)$ / $\langle dN_{ch}/d\eta \rangle$

Summary

December 10-14 2018

- pp collisions
 - ALICE results are in agreement with the other LHC experiments and world data.
 - Theoretical calculations start to describe data over all $p_{\rm T}$ but polarisation is still a puzzle.

p-Pb collisions

- The nuclear modification factor can be explained by Cold Nuclear Matter effects.
- A long-range correlation is observed : $J/\psi v_2$ in central p-Pb collisions.
- Heavy-ion collisions
 - Interplay of two main mechanisms : suppression and (re)generation for charmonium, whereas for bottomonium suppression plays dominant role with negligible (re)generation.
 - Observation of non-zero v_2 with higher precision and first look at non-zero v_3 for J/ψ .
 - A strong energy loss of open heavy flavours in central collisions.
 - The elliptic flow measurement of heavy-flavour together with R_{AA} set stringent constraints for modes.
- Heavy-quark as a function of multiplicity
 - The increase of quarkonium production as a function of charged-particle multiplicity exhibits no strong \sqrt{s} dependence and also found to be similar for charmonium and bottomonium.
 - An increase of bottom quark production compared to charm is observed in dielectron spectra for $p_T > 3$ GeV/c.
 - The production of D mesons shows a similar increase with charged-particle multiplicity.

ALICE upgrade

- ALICE is entering LS2 upgrade.
- ALICE will be able to collect pp and p-Pb data at 200 kHz and Pb-Pb 50 kHz in Run3 of LHC.
- ALICE plans to collect 10 nb^{-1} of Pb-Pb data for a detailed understanding of QGP.

ALICE

Thank you

Quarkonium and heavy-flavour measurements with ALICE at the LHC, DAE HEP 2018, I.Das

December 10-14 2018

29

Prdictions for charmonium v_2 in p-Pb

HP2018 : R. Rapp

5

ALICE

30

6.) Charm in pA Collisions:

