Measurement of azimuthal angular correlations of heavy-flavour hadron decay electrons with charged particles in p-Pb and Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV with ALICE at the LHC

Bharati Naik (IIT Bombay, India) On behalf of the ALICE collaboration

Bharati Naik

Outline

Introduction

- ✓ Physics motivation
- $\checkmark~$ ALICE detector
- Analysis Method
 - ✓ Electron identification
 - \checkmark Heavy flavour electron (HFe)-charged particle angular correlations
- Results
- Summary and outlook

Physics Motivation

- Heavy quarks (charm and beauty), having a large mass, are produced in hard-parton scatterings in the early stages of the collision.
- They experience the whole evolution of the Quark–Gluon Plasma, representing an important tool for its characterization.
- Heavy quarks can interact with the medium via inelastic and elastic collisions with the constituents and mediuminduced gluon radiation.
- **Expected hierarchy on parton energy loss:**

 $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

Dokshitzer and Kharzeev, PLB 519 (2001) 199

Why azimuthal correlations

Physics Motivation

The study of angular correlations between electrons from heavy flavour hadron decays with charged particles in different collision systems allows investigating:

p-Pb Collisions:

- ▶ The cold nuclear matter effects on the charm jets
- \blacktriangleright Long-range ridge-like structures in near- ($\Delta oldsymbol{arphi} pprox 0$) and away-

side ($\Delta \phi \approx \pi$) regions ("double ridges") as observed in h–h correlations.

Pb-Pb Collisions:

- Path-length dependence of heavy-quark energy loss
- Contributions from collisional and radiative energy loss mechanisms
- Medium-induced modification of heavy quark fragmentation and hadronization

ALICE Detector

Analysis Method

► The semi-leptonic decays of heavy-flavour hadrons :

 $B \rightarrow e + X(BR \sim 10\%)$ $D \rightarrow e + X(BR \sim 10\%)$

The electron identification is done using the information form

TPC +EMCAL for intermediate and high p_T

ALI-PERF-119884

DAE-HEP 2018

Bharati Naik

TPC + TOF for low p_{T}

Analysis Method

- Each selected electron (e) is correlated with charged tracks produced in the collision to build the h($\Delta \eta$, $\Delta \varphi$) correlation distributions.
- Effects due to limited detector acceptance and inhomogeneities are corrected via event-mixing technique.
- Non-HF (background) electron sample is subtracted from inclusive electron sample by invariant mass technique.
- Photonic-electron tagging method: Unlikesign Like sign pairs with $m (e^+, e^-) < 140 \text{ MeV}/c^2$ are identified as background.

 $\Delta \varphi = \varphi_{trig} - \varphi_{assoc}$

Azimuthal correlation and Corrections

MESON 2018

Bharati Naik

8th Jun 2018

Results from p-Pb collisions @ 5.02 TeV

Trigger particle (e) p_T range : $1.5 < p_T < 2 \text{ GeV}/c, 2 < p_T < 4$ $\text{GeV}/c, 4 < p_T < 6 \text{ GeV}/c$

Associated particle p_T : 0.3 < p_T < 2 GeV/c

HFe – hadron correlations in p-Pb collisions

- Enhancement of the near- and away-side peaks is present in high-multiplicity collisions
- Low multiplicity event correlations is subtracted from the high multiplicity event to remove jet component. Assumption: jet correlation function is not modified in low and high multiplicity events
- ► The distribution is fitted by the function:

$$\frac{1}{\Delta\eta} \frac{1}{N_{\rm HFe}} \frac{dN_{\rm HFe-ch}(\Delta\varphi)}{d\Delta\varphi} = a[1 + 2V_{1\Delta}^{\rm HFe-ch}\cos(\Delta\varphi) + 2V_{2\Delta}^{\rm HFe-ch}\cos(2\Delta\varphi)]$$

DAE-HEP 2018

- Effect is qualitatively similar to the one observed in the light flavour sector
- Presence of long-range anisotropies with a significance 5.1σ for heavy-flavour particles also in high-multiplicity p—Pb collisions.

Bharati Naik

Results from Pb-Pb collisions @ 5.02 TeV

Trigger particle (e) p_T range : $4 < p_T < 12 \text{ GeV}/c$ Associated particle *p*_T : 1 < *p*_T < 2 GeV/*c* , 2 < *p*_T < 3 GeV/*c*, 3 < *p*_T < 4 GeV/*c*, 4 < *p*_T < 5 GeV/*c*

11

HFe – hadron correlations in Pb–Pb collisions

Azimuthal angular correlations of HF-decay electrons with charged hadrons for centrality 20–50% in Pb–Pb collisions with flow contributions

- Near side Modification of Parton fragmentation function in QCD medium.
- Away side Path-length dependence of in-medium energy loss
- ► Flow contribution estimated using v₂^{HFE} and v₂^{assoc} from Pb-Pb, √s_{NN}= 2.76 TeV

Near side peak yields in p-Pb and Pb-Pb collisions

- ▶ Near-side associated yield in Pb-Pb and p-Pb is calculated.
- The ratio of near-side yield in Pb-Pb shows an increasing order in low associated p_T, indication of possible modification of heavy quarks fragmentation.
- ▶ Ratios shows a centrality dependence with higher increase in yield

- The results of azimuthal correlations between electron and charged particles in p-Pb and Pb-Pb collisions, extracted in different p_T intervals of trigger and associated charged particles, are presented.
- **Positive** v_2 for both light-flavour and heavy flavour particles seen in p-Pb collisions.
- Near-side associated yield in both p-Pb and Pb-Pb collisions are presented. The ratio of nearside associated yield of Pb-Pb w.r.t p-Pb also presented.
- The increase in near-side associated yield in Pb-Pb compared to p-Pb indicates a possible modification of fragmentation of heavy quarks in heavy-ion.

HFe – hadron correlations in Pb–Pb collisions with flow contribution

Azimuthal angular correlations of HF-decay electrons with charged hadrons for centrality 0–20% in Pb–Pb collisions with flow contributions

Comparison of HFe – hadron correlations in p-Pb and Pb-Pb collisions

